精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰代數二 課程性質︰數學系選修 數學系碩士班數學組必選 課程教師︰朱樺 開課系所︰數學系所 考試時間︰950624 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : (1) (20%) (a) Let $F$ be a field and $K$ be a Galois extension of $F$. Let $f(x)$ be an irreducible polynomial in $F[x]$. If $g(x)$ and $h(x)$ are irreducible factors of $f$ in $K[x]$, show that there exists an automorphism $\sigma$ of $K$ over $F$ such that $\sigma(g)=h$. (b) Give an example when this conclusion is not valid if $K$ is not Galois over $F$. (2) (20%) Let $f(x)=x^4+ax^2+bx+c$ be a quartic polynomial over $\mathbb{R}$, and let $D$ be the discriminant of $f$. Prove the following statements: (a) $f$ has four real roots if and only if $D>0$, $a<0$, and $a^2-4c>0$. (b) $f$ has four nonreal roots if and only if $D>0$, and either $a \geq 0$, or $a^2-4c \leq 0$. (c) $f$ has two real and two nonreal roots if and only if $D<0$. (d) $f$ has at most three roots if and only if $D=0$. (3) (20%) (a) Let $A$ be the set of all real number $\alpha$ such that $\cos \alpha$ is constructible by ruler and compass. Show that $A$ is an additive subgroup of $\mathbb{R}$, and if $\alpha \in A$, then $\frac{1}{2}\alpha \in A$. (b) Show that $\cos \frac{\pi}{5}$ is constructible. (c) Determine all integers $n$ such that the angle of degree $n$ is constructible. (4) (20%) Let $K=\mathbb{C}(x)$ and let $\sigma$, $\tau$ be $\mathbb{C}$-automorphisms defined by $\sigma: x \mapsto \frac{\sqrt{3}ix+1}{x+\sqrt{3}i}$, $\tau: \x \mapsto -x$. Let $G$ be the group generated by $\sigma$ and $\tau$. (a) Determine the group $G$. (b) Find the fixed subfield $K^G$ of $G$. (5) (20%) Let $K=\mathbb{Q}(\sqrt{2}, \sqrt{3},u)$, where $u^2=(9-5\sqrt{3})(2-\sqrt{2})$. (a) Show that $K$ is a Galois extension of $\mathbb{Q}$. (b) Determine the Galois group of $K$ over $\mathbb{Q}$. (c) Determine the subgroups of $\Gal(K/\mathbb{Q})$ and the corresponding subfields in the Galois pairing. (6) (20%) (a) Find the character table of the quaternion group $Q=\{\pm 1, \pm i, \pm j, \pm k\}$. (b) Find all irreducible representations of the group $Q$. --       ╓╮╓╮ ╓╮       ╟╢╰╫╫╮╟╢╓╖╮╮╭╥─╮╓╮ ╮╭╥─╮╭╥─╮       ╟╢ ╟╢ ╟╢╟╢║║╟╢ ║╟╢ ║╰╨╥╮╟╢ ║       ╟╢ ╟╢ ╟╢╟╢║║╟╢ ║╟╢ ║  ╟╢╟╫─╯       ╰╜ ╰╨╯╰╜╰╜╜╜╰╨─╯╰╨─╰╰─╨╯╰╨─╯ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.50.48
monotones:這是 LaTex語法嗎? 07/07 07:10
micool:u got it. 07/07 07:56