精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲 課程性質︰ 課程教師︰周青松 開課系所︰數學系 考試時間︰2006年7月26日 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : I. Sketch the graph of the function f(x) = 1/4x^4 - 2x^2 + 7/4 on [-5,5] II. Assume that f is a continuous function and that x ∫tf(t)dt = sinx - xcosx 0 A). Determine f(π/2). B). Find f'(x). III. Let { 1-x^2, -1≦x≦1 x f(x) ={ 1, 1≦x≦3 and let g(x)=∫f(t)dt { 2x-5, 3≦x≦5 -1 A). Carry out the integration. B). Sketch the graph of f and g. IV. A). Find f given that f''(x)=6x-2,f'(1)=-5,and f(1)=3. B). Find f given that f''(x)=sinx,f'(O)=-2,f(0)=1. V. d 2x A). Calculate the derivative ─(∫ t√(1+t^2) dt) dx tanx B). Find H'(3) given that 1 x H(x) = ─∫[2t-3H'(t)]dt x 3 (每大題均20分) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.248.194