精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲 課程性質︰ 課程教師︰周青松 開課系所︰數學系 考試時間︰2006年7月14日 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : I. A). Let f(x) = { x^2 , x<1 Find A given that f is continuous at 1. {Ax-3 , x≧1. B). Give necessary and sufficient condition on A and B for the function { Ax-B , x≦1 f(x) ={ 3x , 1<x<2 {Bx^2-A , 2≦x to be continuous at x=1 but dis continuous at x=2. II. A). Show that, for all real numbers c, 1-cos x lim Sin x = Sin c , lim ──── = Cos c x→c x→c x B). Prove that Sin x 1-cos x lim ──── = 1 and lim ──── = 0 x→0 x x→0 x III. A). Find f'(x) given that f(x) ={ x^2, x≦1 {2x-1, x>1 . B). Show that if f is diifferentiable at x, then f is continuous at x. IV. A). Prove that if P(x)=a x^n + a x^n-1 + ... + a x +a n n-1 1 0 then P'(x)=na x^n-1 + (n-1)a x^n-2 + ... + a1 n n-1 B). Show that (i). d n n-1 ─ x = nx holds for all integers. dx (ii).d p/q p p/q - 1 ─ x = ─x , q≠ and p,q屬於Z dx q V. A). d [ d ] B). d [ ] ─[t─(cos t^2)] ─[Sin(f(3x))] dt[ dt ]. dx[ ] (每大題均20分) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.248.194