精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲 課程性質︰數學 - 微積分 課程教師︰周青松 開課學院:(下面有限定) 開課系所︰生機、生工、地質、地理、工管等 考試時間︰2006/11/13 星期一 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : I A) Determine the discontinuities, if any, of the following function: { 2x+1 , x <= 0 f(x) = { 1 , 0 < x <= 1 { x^2+1 , x > 1 B) Give necessary and suffcient condition on A and B for the function: { Ax-B , x <= 1 f(x) = { 3x , 1 < x < 2 { Bx^2-A, 2 <= x to be continuous at x=1 , but discontinuous at x=2 II A) Given that f(x) = { x^2 , x <= 1 find f'(1) { 2x-1 , X > 1 B) Find A and B given that the function : f(x) = { x^2-2 , x <= 2 { Bx^2+Ax, x > 2 is differentiable at x=2 III Find the indicated derivative. A) d/dt[ t‧d/dt(cos(t^2)) ] B) d/dx[ sin(f(3x)) ] IV Let f(x) = (sec(x))^2 and g(x) = (tan(x))^2 on the interval O = (-π/2 , π/2) A) Show that f'(x) = g'(x) for all x 屬於 O B) The result in part A) implies that f - g = C, a constant, on O. Find the value of C V Sketch the graph of the function f(x) = 1/4‧x^4 - 2(x^2) + 7/4 for x 屬於 [-3 , 3] -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.35.25.48 poca:轉錄至看板 NTUBA99study 11/13 21:19