精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲 課程性質︰數學 - 微積分 課程教師︰周青松 開課學院:(下面有限定) 開課系所︰生機、生工、地質、地理、工管等 考試年月日︰2007/11/9 星期五 考試時限(分鐘):8:10---10:00 遲到20分鐘不得進場 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : Ⅰ. Give necessary and sufficient conditions on A and B for the function {Ax-B , x≦1 f(x) ={3x , 1<x<2 {Bx^2-A , 2≦x to be continuous at x=1 but discontinuous at x=2. Ⅱ.Show that sin x lim ─── = 1 x→0 x 1-cos x and lim ──── = 0 x→0 x Ⅲ. Find A and B given that the function f(x) ={x^3 , x≦1 {Ax+B , x>1 is differentiable at x=1. Ⅳ. find A and B given that the that derivative of f(x) ={Ax^3+Bx+2 , x≦2 {Bx^2+A , x>2 is everywhere continuous Ⅴ a. find the critical points ot the function f(x)=(x^3-1.5x^2-6x+2)/4 , x屬於[-2,無限) to chassify all the exreme values and sketch the graph b.find d given that (d,f(d)) is a point of inflection of the graph of f(x)=(x-a)(x-b)(x-c) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.7.59 ※ 編輯: uhks 來自: 140.112.7.59 (11/09 09:26)
Pineapple225:你也太快了吧= =+ 我剛打好的說OTL 11/09 10:07