精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰ 微積分甲 課程性質︰ 數學 - 微積分 課程教師︰ 周青松 開課學院: 開課系所︰生工、地質、工管 考試日期(年月日)︰2008/11/14 考試時限(分鐘):8:20~10:00 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : Ⅰ.A) Give necessary and sufficient conditions on A and B for the function {Ax-B , x≦1 f(x) ={3x , 1<x<2 {Bx^2-A , 2≦x to be continuous at x=1 but discontinuous at x=2. B) Let f be the Dirichlet function f(x)={ 1 , x rational { 0 , x irrational Show that lim xf(x)=0 x→0 II. A) Find A and B given that the function f(x) = { x^2-2 , x <= 2 { Bx^2+Ax, x > 2 is differentiable at x=2 B) Set f(x)={ x^2-x , x<=2 Show that f is continuous at x=2, { 2x-2 , x>2 is f differentiable at x=2? III Let f be a differentiable function. Use the chain rule to show that: A) If f is even , then f' is odd. B) If f is odd , then f' is even. IV A) Set f(x)=(secx)^2 and g(x)=(tanx)^2 on the interval(-π/2 , π/2) Show that f'(x)=g'(x) for all x in (-π/2 , π/2). B) Assume that f and g are differentiable on the interval (-c , c), c>0 , and f(0)=g(0). Show that if f'(x)>g'(x) for all 屬於(0,c), then f(x)>g(x) for all x屬於(0,c). V Sketch the graph of f(x)=1/4‧x^4 - 2(x^2) + 7/4 ,x屬於[ -3, 無窮大). -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.106.58