精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲下 課程性質︰必修 課程教師︰周青松 開課學院:理學院 開課系所︰ 考試日期(年月日)︰2010/6/21 考試時限(分鐘):100分鐘 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : A.(a) Findfwith the conditionf'(t)=2f(t) and f(0)=i-k. (b) Letfbe a differentiable vector-valued function. Show that whenver ∥f(t)∥≠0. d f'(t) f(t)‧f'(t) —(————— - ————————f(t) dt ∥f(t)∥ ∥f(t)∥^3 B.(a) Find the directional derivative of f(x,y,z)=Ax^2 + Bxyz+ Cy^2 at the point P(1,2,1) in the direction of Ai+Bj+Ck. (b) Assume that ▽f(x) exists. Prove that, for each integer n, n n-1 ▽f (x)=nf (x)▽f(x). Dose the result hold of n is replaced by an arbitary real number? C.(a) Use the chain rule to find the rate of change of f(x,y,z)=x^2 y+zcosx with repect to t along the twisted cubic r(t)=ti+t^2 j+t^3 k. (b) Set r=∥r∥, wherer=xi+yj+zk. If f is a continuously differentiable function of r, then r ▽〔f(r)〕=f'(r)—, where r≠0       r D.(a) Evaluate the double intergral __ ∫∫ √xy dxdy, Ω:0≦y≦1, y^2≦x≦y. Ω (b) Calculate the volume within the cylinder x^2 + y^2 = b^2 between the planes y+z=a and z=0 given that a≧b>0. E.(a) Evaluate π/2 π/2 1 ∫ ∫ ∫e^z cosxsiny dzdydx 0 0 0 (b) Evaluate the triple integral ∫∫∫2ye^x dxdydz, T where T is the solid given by 0≦y≦1, 0≦x≦y, 0≦z≦x+y. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.167.130.132 SWW:轉錄至看板 b982040XX 07/07 12:35