精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰線性代數 課程性質︰必修 課程教師︰程舜仁 開課系所︰數學系 考試時間︰ 試題 : Final Exam Date:January 11,2006 Course Name:Linear Algebra Course Instructor:Shun-Jen Cheng Instructions: You need to justify your answers in order to receive full credits. You may use ANY result proved in class. Good luck! 1.(10 points)Find the inverse of the matrix: ┌ ┐ │1 1 1 1│ A=│1 -1 0 -2│ │1 1 0 4│ │1 -1 0 8│ └ ┘ 2.(10 points)Solve the following system of linear equations: (x y z w u stands for variables) 2x + 3z - 4u = 5 3x - 4y + 8z - 3w = 8 x - y + 2z + w - u = 2 -2x + 5y - 9z - 3w -5u = -8 3.(10 points)Find all solutions to the homogeneous linear differential equation y^(6) - 2y^(3) + y = 0 in the space C^∞(R, C) 4.(10 points)Let A be an m × nmatrix with rank m. Prove that there exists n × m matrix B such that AB = I (m × m identity matrix) 5.(15 points)Let A be an n × n matrix such that A^m = 0, for some m. Prove that the matrix I(n × n) + A is invertible. 6.(15 points)Let X1, X2, ...., Xn be any numbers. Let ┌ ┐ │1 1 ... ... 1 │ │X1 X2 ... ... Xn │ │X1^2 X2^2 ... ... Xn^2 │ A = │ . . . . . │ │ . . . . . │ │ . . . . . │ │X1^(n-1) X2^(n-1)... ... Xn^(n-1)│ └ ┘ Prove that detA = Π . Hint: use induction on n. 1≦i<j≦n(Xj-Xi) 7.(15 points)Let V be a finite-dimensional vector space. Let T : V → V be a linear map. Prove that for every i 屬於自然數 we have 2dim(Kernel T^(i+1)) ≧ dim(Kernel T^(i+2)) + dim(Kernel T^(i)). 8.(15 points)Let V and W be finite-dimensional vector spaces and T : V → W be a linear map. Prove that T : V → W is one-to-one if and only if T* : W* → V* is onto. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 210.61.205.207