精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰偏微分方程導論 課程性質︰必修 課程教師︰陳俊全 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2010.05.06 考試時限(分鐘):120min 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : Choose 4 from the following 6 problems. Please write down your proof and answer carefully and clearly. Good Luck! :) 1. Solve (a) yu_x + u_y = 0, u(x,0) = e^3x (b) u_x^2 + 4u^y = 0 for y > 0, u(1,y) = 1/y 2. Solve u_xx + 2u_xy - 3u_yy = 0, u(x,0) = x, u_y(x,0) = sinx 3. Consider u_t = u_xx for -1<x<1, 0<t<∞; u(-1,t)=u(1,t)=0; u(x,0)=(1-x^2)x (a) Show that |u(x,t)|≦(2/3√3) for t>0, -1<x<1. (b) Show that u(x,t) = -u(-x,t) for t≧0, -1≦x≦1 1 (c) Show that∫ u^2 dx is a decreasing function in t. -1 4. Prove that if ψ(x) is a bounded continuous function for -∞<x<∞, then 1 ∞ -(x-y)^2 lim --------∫ e^(----------) ψ(y) dy = ψ(x) t->0+ √4πt -∞ 4t 5. Solve u_t = ku_xx, 0<x<∞, t>0; u(x,0)= e^x + e^-x; u_x(0,t) = 0 6. Solve u_tt = c^2 u_xx, 0<x<∞, t>0; u(0,t)=t^2; u(x,0)=0, u_t(x,0)=1 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.218.187