精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰高等微積分二 課程性質︰數學系必修 課程教師︰陳俊全 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2011/4/26 考試時限(分鐘):170分 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : Choose 5 from the following 6 problems 1. Discuss the pointwise convergence and uniform convergence of x (a) fn(x) = ─────── , 0 < x < ∞ 1 + n^2 x^2 n x (b) gn(x) = Σ ─────── , 0 < x < ∞ k=1 1 + k^2 x^2 2. Suppose {fn} is an equicontinuous sequence of functions from a compact set A to R(實數), and {fn} converges pointwise on A. Prove that {fn} converges uniformly on A. 3. Let f: [0,1] → R(實數) be continuous. 1 (a) Assume ∫ f(x) x^k dx = 0 for k = 0,1,2,... 0 Prove that f(x) = 0 on [0,1] (b) Assume f(0) = f(1) = 0. Prove that there are polynomials Pn such that sup |f(x) - x(1-x)Pn(x)| → 0 as n → ∞ x屬於[0,1] ∞ ∞ 4. Prove that Σ a_k = A(C,1) implies Σ a_k = A(Abel). k=0 k=0 5. (a) What is the contraction mapping principle? (b) Let A = {(x,y)| 0≦x≦1, 0≦y≦1}, k(x,y) : A→R(實數) be continuous, and a(x) : [0,1]→R(實數) be continuous. Assume |k(x,y)| < 1 for each (x,y) 屬於 A. Prove that there is a unique continuous real-valued function f(x) on [0,1] such that 1 f(x) = a(x) + ∫ k(x,y) f(y) dy. 0 6. Let f : R^2(實數^2)→R^3(實數^3) be defined by f(x,y) = (x^3 y, g(x,y), x^4 y^2). Assume f is differentiable at (1,2). (a) Prove that g(x,y) is continuous at (1,2). dg dg (b) Assume further that ─(1,2) = 5 and ─(1,2) = 1. (partial不好打 用d代替) dx dy Compute Df(1,2). -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.248.245