課程名稱︰微積分乙
課程性質︰
課程教師︰陳武勇
開課學院:管院
開課系所︰
考試日期(年月日)︰09/6/18
考試時限(分鐘):兩堂
是否需發放獎勵金:是
(如未明確表示,則不予發放)
試題 :
一.設f(x,y)= xy(x^2-y^2)/(x^2+y^2) , (x,y)≠(0,0)
0 , (x,y)=(0,0)
試求fx(0,0)及fxy(0,0)
二.
y^2
a.設f(x,y)=∫ sin(t^2)dt , 求fx(x,y)及fy(x,y)
x
b.設xz^2-ysinz=0 試求∂z/∂x 及∂z/∂y
三.設f為單變數可為分函數,z=xf(y/x)是一個曲面,求證此曲面上任意點的切平面均過
原點(提示:w=f(g(x,y)), ∂w/∂x = f'(g(x,y)).∂g(x,y)/∂x )
四.設f(x,y)=x^2-3xy+y^2, R={(x,y);x^2+y^2≦4} 試求f在R上的最大值與最小值
五.在x+y+z=32及x-y+z=0之條件下,求f(x,y,z)=xyz之極大值
六.
2 2+√(4-y^2)
a.試求∫∫ dxdy
0 2-√(4-y^2)
1
b.設f(x)=∫ e^(t^2) dt 試求f在區間[0,1]的平均值
x
七.試求由z=√(x^2+y^2) , z=0, 及x^2+y^2-2x=0所圍區域的體積
八.試求曲線r=1+cosθ之弧長
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.112.241.123