精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰高等統計推論 課程性質︰選修∕數研所統計組必修 課程教師︰陳宏 教授 開課系所︰數學系 考試時間︰2006/04/19 13:20~15:30 試題: Advanced Statistical Inference II Midterm (Spring 2006) 1. Let X_1,...,X_n be i.i.d. from a Poisson distribution P(θ) with an unknown θ>0. (a) (30 points) Find the maximum likelihood estimate of η=exp(-θ). _ nX (b) (30 points) Let T_n=(1-1/n) . Find the bias and mean square error of T_n as an estimator of η. (c) (40 points) Determine the asymptotic behavior of T_n. Discuss on its consistency and asymptotic distribution. 2. Suppose Y_1,...,Y_n arise from the following AR(1) model: Y_j=μ+ρ(Y_j-1-μ)+ε_j, j=1,2,... iid 2 2 where ε_j ~N(0,σ ), μ屬於R, σ >0 and -1<ρ<1. Suppose that Y_0=y_0 where y_0 is a given constant. (a) (20 points) Write down the density function of Y_1 and the conditional density function of Y_2 given Y_1=y_1 (b) (20 points) Write down the joint density function of (Y_1,Y_2). 2 (c) (30 points) Write down the likelihood function of θ=(μ,σ ,ρ) and find the minimal sufficient statistic for θ. (d) (30 points) Propose a method of finding MLE in (c). 3. Suppose that X_1,...,X_n is a random sample from a normal distribution 2 N(μ,μ ), where μ>0. ︿ (a) (30 points) Show that the likelihood equation has a unique root μ within the parameter space unless X_i are all equal to zero. ︿ 2 (b) (30 points) Show that the asymptotic variance of μ is equal to μ∕(3n). You may without proof assume that the necessary regularity conditions are satisfied. (c) (40 points) Consider the estimator ~ _ ___________ μ={X+2√SSD∕(n-1)}∕3, n _ 2 ~ where SSD=nΣ(X_i-X) . Derive the asymptotic distribution of μ. i=1 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.7.59