精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲下 課程性質︰系內必帶 課程教師︰陳宏 開課學院:工學院 開課系所︰土木工程學系 考試日期(年月日)︰2010/6/10 考試時限(分鐘):50min 是否需發放獎勵金:是,謝謝 (如未明確表示,則不予發放) 試題 : Make sure to give sufficient reason in each problem or you will NOT get any credit for your answer. 1.(25 points) Find ∫∫sin(x+y)cos(2x-y) dA E where E is the region enclosed by y=2x-1, y=2x+3, y=-x, and y=-x+1. Solution. Refer to Q1 of 90(II) midterm. http://www.math.ntu.edu.tw/~mathcal/download/exam/cala902_II_final.pdf 2.(25 points) Find the surface area of the torus r(u,v)=(R+rcosu)cosv i+(R+rcosu)sinv j+rsinu k, 0<=u,v<=2π, where r, R are two constants and r<R. Solution. Refer to Q2 of 92 midterm. http://www.math.ntu.edu.tw/~mathcal/download/exam/952Cala2Final_sol.pdf 3.(25 points) Consider the conservative force field 1 F=yz^2 i+(xz^2+ze^(yz)) j+(2xyz+p(y,z)+-----) k, 1+z where p(y,z) is a continuous differentiable function of y and z and p(0,z)=0. (a). Determine p(y,z) (b). Find the potential function of F. (c). Let C denote the space curve r(t)=ti+t^2j+t^3k, 0<=t<=1. Evaluate ∫F·dr. C Solution. Refer to Q5 og 96 midterm. http://www.math.ntu.edu.tw/~mathcal/download/exam/962A2Final.pdf 4.(25 points) Evaluate ∫(4y+3x+siny)dx+(3y+2x+xcosy)dy C where C is the circle (x-2)^2+(y-5)^2=9. Solution. Refer to Q5 of 94 midterm. http://www.math.ntu.edu.tw/~mathcal/download/exam/942cala2_final_so1.pdf -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.168.68.158