精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰工程數學下 課程性質︰機械系大二下必修 課程教師︰施文彬 開課學院:工學院 開課系所︰機械系 考試日期(年月日)︰2007.6.25 考試時限(分鐘):110 mins 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : Rule: No calculators are allowed. You are allowed to bring an A4 size information sheet. Please provide the details of your calculation. Good luck! 1 1.(20%) Use convolution to find the inverse Fourier transform of ───── . (1+iω)^2 Then find the inverse Fourier transform of the function (e^6iω)sin(2ω) ──────── . (1+iω)^2 du d^2(u) du 2.(a)(10%) Transform ── = k( ──── + A── + Bu ) into a standard heat dt d(x^2) dx equation by letting u(x,t) = [e^(αx+βt)]v(x,t). du d^2(u) du (b)(10%) Solve ── = ( ──── + 6 ── ) for 0<x<4, t>0; dt d(x^2) dx u(0,t)=u(4,t)=0 for t≧0; u(x,0)=1. 3.(a)(15%) Determine the eigenvalues (or at least the characteristic equation for them), eigenfunctions, and weighting function of the Sturm-Liouville problem (x^2)y"+ xy'+ (λx^2 - 4)y = 0, where y(0) isbounded and y(L)=0. (Hint: let t = (√λ)x ) (b)(10%) Prove that the eigen-functions are orthogonal to each other. d^2(y) d^2(y) 4.(20%) Consider the wave equation ──── = c^2 ──── on the line for d(t^2) d(x^2) dy c=2 and the given initial condition y(x,0)=f(x) and ─(x,0)=g(x). dt Here f(x)=┌ sin(x) for -2π≦x≦π ; g(x)= e^(-4|x|). └ 0 for x<-2π and x>π Solve the problom using the Fourier integral and then again using the Fourier transform. 5.(15%) Solve the boundary value problom using separation of variables. d^2(y) d^2(y) ──── = ──── - cos(x) for 0<x<2π, t>0; d(t^2) d(x^2) y(0,t)= y(2π,t)= 0 for t≧0; dy y(x,0)=0, ─(x,0)= x for 0<x<2π. dt -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.45.97.11
ospery :are allows? 02/10 21:26
※ 編輯: dakang 來自: 114.45.97.11 (02/11 02:46)
dakang :打錯:P 02/11 02:48