精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲上 課程性質︰必修 課程教師︰蔡雅如 開課學院:電資學院 工學院 開課系所︰電機系 材料工程系 資工系 資管系 考試日期(年月日)︰2010/11/1 考試時限(分鐘):45分鐘 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : -1 -1 1.(a) Find the tangent line of y = sinx + sin x + cosx + cos x + tanx + -1 π tan x at the point of (0,1+---)。 2 dy (b) Find -- if e^y = ln(x^2+y^2) 。 dx 2.(a) A number c is called a "fixed point" of a funtion f if f(c) = c. Prove that if f'(x)>1 for all real number x, then f has at most one fixed point. (b) The Extreme Value Theorem states that if f is continuous on a closed interval [a,b], then f attains an absolute maximum values f(c) for some c in [a,b]. Show that the condition [a,b] cam not be replaced by (a,b). That is, give a funtion f that is continuous on (a,b) but has no absolute maximum value. (Write down the formula for f.) 3.(a) A particle moves along the curve y = √(1+x^3) . As it reaches the point (2,3), the y-coordinate is increasing at a rate of 4 cm/s. How fast is the x-coordinate of the point changing at that instant? (b) Use a linear approximation (or differentails) to estimate ln1.02 and -1 tan 1.02, respectively. -- Like a million stardust 忘れないから 共に過ごした一瞬さえ全部 君の未来を僕は祈るよ My precious one,but I keep going For dearest...graffias is on the one -- バルシェ <story teller > graffias -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.240.113
hsnuyi :differentials拼錯了喔 11/05 00:14