精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰組合學 課程性質︰研究所 課程教師︰葉永南 開課學院:理學院 開課系所︰數學所 考試日期(年月日)︰2006.12.25 考試時限(分鐘): 是否需發放獎勵金: 我要獎勵金~~~~ (如未明確表示,則不予發放) 試題 : 1.Prove the inverse pair: a_n = sigma (n取k) b_(n-ck), k >= 0 b_n = sigma (-1)^k { (n-k(c-1)-1取k) - c*(n-k(c-1)-1取k-1) }a_(n-ck) k >= 0 for n >= 0, where c is an integer. This is called a Chebyshev inverse pair. 2. By using decomposition (Subsets): ======================================================================= Let S_k be the set pf all k-subsets of Nn for n >= 0. Then ~ k S_k -> N_+ ╳ N:{σ_1~σ_k}_n |-> (j_1 ~ J_(k+1)), where σ_1 < ... < σ_k, σ_i - σ_(i-1) = j_i for i = 1 ~ k+1, σ_0 = 0 and σ_(k+1) = n. ======================================================================= Show that the number of k-subsets of Nn with m circular successions is (n/k)(k取m)(n-k-1取k-m-1) 3. (a) From the Jacobi triple product identity: ======================================================================= ∞ Pi ( 1+yq^(2m-1) )( 1+(y^-1)(q^(2m-1)) )(1-q^(2m)) = sigma(y^k)(q^(k^2)) m>=1 k=-∞ ======================================================================= Deduce that: Pi (1 - q^l)^3 = sigma (-1)^k (2k+1) q^(k+1取2) l>=1 k>=0 (b) Combine Euler's pentagonal number theorem with part (a) to obtain an expansion for F(q) = q Pi (1-q^l)^4. Hence, by noting that: l>=1 q Pi (1 - q^i)^-1 = F(q) Pi (1-q^l)^(-5), i>=1 l>=1 deduce that p(5n+4) = 0 (mod 5) 4. Prove that the number of vertices at height h in planted planetrees on n nonroot vertices is: {(2h+1)/(n+h)}(2n-1取n-h-1) 5. Show that the number of {0,1} sequence of length l with no occurrences of 11101011 or 101111 is [x^l] (1+x^5+x^6-x^8-x^9-x^10)(1-2x+x^5-2x^7+x^9+x^11)^-1 6. (a) Let A = [a_ij] n by n, be a symmetric matrix of indeterminates. Show that the number of distinct monomials in the expansion of |A| is b_n = [x^n/n!] (1-x)^(-1/2) exp(x/2 + x^2/4). (b) Show that b_(n+1) = (n+1)b_n - (n取2)b_n-2, n >=0, and b_0 = 1, b_i = 0 for i < 0. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.228.77.51 ※ 編輯: TassTW 來自: 61.228.77.51 (01/23 00:48)