精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲下 課程性質︰必修 課程教師︰王金龍 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2011/3/24 考試時限(分鐘):40 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 2 2 A. Let u(x,y) : R → R be a C function. Express u + u in polar coordinate. xx yy 2 1 B. Let f(x,y) : R → R be a C function. d b b Show that ─ ∫ f(x,y) dx = ∫ f (x,y) dx. dy a a y Hint. Every continuous function defined on a bounded and closed set n D R is uniformly continuous. (:包含於) 3 C. Consider the line integral ∫ L, where L = Adx + Bdy + Cdz defined on R . Γ 3 Prove that L is exact , that is, L = df for somr f on R , if and only if the integral is independent to the path, which means that it only depends on the end points of Γ. (Note that we assume A, B, C are all continuous) ┌ x = cos t D. (a) Evaluate ∫ zdx + xdy + ydz over the arc of the helix │ │ y = sin t │ └ z = t from (1,0,0) to (1,0,2π). ydx + xdy 1 (b) Evaluate ∫ ─────── over the arc of y = sin ─ 1 + (x^2)(y^2) x from (1/2π,0) to (1/π,0). Hint. Check if the differential form is exact. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.42.207.7