精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲下 課程性質︰必修 課程教師︰王金龍 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2011/05/12 考試時限(分鐘):40 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : A. Let S and T be any disjoint sets whose union has area. - + - (a) Show that A (S∪T) ≦ A (S) + A (T) for any finite partition. n n n + - - + (b) Show that A (S) + A (T) ≦ A (S∪T) + A (d(S∪T)) for any finite partition. n n n n (d is the partial-derivative symbol.) + - (c) Show that A (S) + A (T) = A(S∪T). B. 2 2 (a) Find the volume common to the two cylinders x + z ≦1 2 2 and y + z ≦1. 2 2 (b) Find the volume common to the three cylinders x + z ≦1 2 2 2 2 , y + z ≦1 and x + y ≦1. C. 1 1 (x^2) (a) Evaluate the integral ∫∫e dx dy. 0 y 1 √(1-z^2) √(1-y^2-z^2) 2 2 2 (b) Evaluate the integral ∫∫ ∫ (x + y + z )xyzdxdydz. 0 0 0 (x+y+z) D. Evaluate the integral ∫ e dxdydz. {x^2+y^2+z^2≦1} Hint. Consider the change variable : x' = (x+y+z)/√3 y' = (x-z)/√2 z' = (x-2y+z)/√6 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.240.100 ※ 編輯: impin 來自: 140.112.240.100 (06/08 15:38)