精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲上 課程性質︰必修 課程教師︰王金龍 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2011/1/6 考試時限(分鐘):30 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : A. (a) Let f(x) = |x| for x ε [-π,π] and f( x + 2 ) = f(x) for all x. Find the Fourier series of f. (1;33mε:屬於) ∞ sin(2k-1) (b) Evaluate Σ ───── . k=1 (2k-1)^3 B. Consider a vector space V = {f : [-π,π]→R | f is continuous} over 1 π field R. We define the inner product 〈f,g〉= ─ ∫ f(x)g(x) dx and π -π ________ the norm || f || = √〈f,f〉 for all f,g ε V. (a) Show that {1/√2, cos x, sin x, cos 2x, sin 2x,...} is an orthonormal basis of V . (b) Let Vn = span{1/√2, cos x, sin x, cos 2x, sin 2x,..., cos nx, sin nx}, which is a subspace of V. For any given fεV,show that the projection of f on Vn is the n-th Fourier polynomial. C. (a) Let fn be a sequence in V. If fn converges to f uniformly, show that lim ||fn - f|| = 0. n→∞ (a0)^2 ∞ (b) Show that ─── + Σ [(ak)^2 + (bk)^2] = || f ||^2, where ak, bk's 2 k=1 are the Fourier coefficient of f. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.42.217.82 ※ 編輯: wheata 來自: 114.42.217.82 (06/05 03:16)
samviga :均分10分/30分 的那一次啊XDD 06/08 03:59