精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分甲下 課程性質︰必修 課程教師︰王金龍 開課學院:理學院 開課系所︰數學系 考試日期(年月日)︰2011/3/10 考試時限(分鐘):40 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : A. Let f(x,y) be a real-valued function. Show that if f (x,y) and f (x,y) x y are both continuous at (0,0), then f(x,y) is differentiable at (0,0). xy ┌ ────── if (x,y) ≠ (0,0) B. Consider the function f(x,y) = │ (x^2+y^2)^2 │ └ 0 if (x,y) = (0,0) (a) Show that f is continuous at (0,0). (b) Show that f (0,0) and f (0,0) are both exist and evaluate their values. x y (c) Show that f is not differentiable at (0,0). C. Consider the function -1 -1 ┌ (x^2)tan (y/x) - (y^2)tan (x/y) if x≠0 and y≠0 f(x,y) = │ └ 0 otherwise (a) Evaluate f (x,y) and f (x,y) for x≠0 and y≠0. x y (b) Evaluate f (0,0) and f (0,0), and show that f is differentiable at (0,0). x y What is the tangent plane of the surface z = f(x,y) at (0,0,0)? (c) Evaluate f (0,y) for y≠0 and f (x,0) for x≠0. x y Show that f (0,0)≠f (0,0). xy yx 2 D. Let f(x,y), u(x,y) and v(x,y) be C functions. Suppose that f + f = 0 xx yy and u = v , u = - v , show that the function x y y x ψ(x,y) = f(u(x,y),v(x,y)) also satisfies ψ + ψ = 0. xx yy -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.42.207.7 ※ 編輯: wheata 來自: 114.42.207.7 (06/09 10:08)