精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分乙下 課程性質︰必修 課程教師︰王振男 開課學院:醫學院 開課系所︰醫學系 考試日期(年月日)︰2011/4/49 考試時限(分鐘):120min 是否需發放獎勵金:是 (如未明確表示,則不予發放) 1. Let r(t) be a curve in R^3 with r'(t)≠0. Show that the curvature of r(t) │r'(t) ×r''(t)│ κ(t) = ───────── ("×" means "cross product") │r'(t)│^3 Compute the curvature of r(t)=(t,4t^(3/2),-t^2) at t=1. (10%) 2. Let f(x,y,z) and g(x,y,z) be infinitely differentiable functions. Assume that f(0,0,0)=g(0,0,0) and ▽f(0,0,0)=(-1,2,1),▽g(0,0,0)=(3,-1,2). f(x,x^2,x^3) Find the limit: lim ───────. (15%) x→0 g(x^3,x^2,x) 3. Let a three-dimensional surface in R^4 be described by f(w,x,y,z)=w˙e^(wx)+yz+xz+xy=0. Find the equation of the tangent plane at (0,1,-1,1). (10%) 4. Evaluate the following iterated integral. (10%) 1 1 ∫ ∫ e^[x^(3/2)] dxdy. 0 y^2 5. A space probe in the shape of the ellipsoid 4x^2+y^2+4z^2=16 enters Earth's atmosphere and its surface begins to heat. After 1 hour, the temperature at the point (x,y,z) on the probe's surface is T(x,y,z)=8x^2+4yz-16z+600. Find the hottest point on the probe's surface. (20%) 6. Classify all critical points of f(x,y)=xy˙e^(-x^2-y^2). (20%) 7. In the second derivative test, when f_xx˙f_yy-(f_xy)^2=0 at the critical point, then the test is inconclusive. Give three examples where the critical is a local maximum, a local minimum, or a saddle point and that f_xx˙f_yy-(f_xy)^2=0 at the critical point. (15%) (PS: These three examples can be explained either by one function or by three different functions respectively.) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.241.132 ※ 編輯: shokanshorin 來自: 140.112.241.132 (04/27 16:04)
ALegmontnick:done 04/27 17:25
liltwnboiz : @.@ 怎麼可以搶我的文章 QQQQQQQQ 04/27 19:44
shokanshorin:樓上拍拍別桑心XD 04/28 00:26