精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰工程數學一 課程性質︰系必修 課程教師︰王勝仕 開課學院:工學院 開課系所︰化工系 考試日期(年月日)︰2011年1月14日 考試時限(分鐘):140分鐘 是否需發放獎勵金:是 試題 : 1.Find the inverse Laplace transform of F(s)=L{f(t)} (1)F(s)=((e^-2πx)-(e^-8πx))/(s^2+1) (2)F(s)=(s(s^2-9))^-1 (3)F(s)=(3s+2)/(4s^2+12s+9) (4)F(s)=ln((s+a)/(s+b)) (5)F(s)=(s^2+4s+13)^-2 2.Find the Laplace transform of f(x) (1)f(t)=(cosh(t/2))^2+sin(3t-1/2) (2)f(t)=(e^at)*(sinht)/t (3) f(t) | | |_ _ 1 | /\ |/ \ ______________(t) 1 2 (4) f(t) | | |_ _ 1 | /\ /\ /\ .... |/ \/ \/ \ ______________________________(t) (5)f(t)=(t^2+1)u(t-1) 3.(1)a)Define Dirac delta functions/unit impulse function δ(t-c) using unit ∞ step functions; b)Determine the value of ∫δ(t-c)dt (where 0<c<∞); c)Find the Laplace transform of δ(t-c) (9%) (2)Using two ways to find the Laplace transform of ((s+a)(s+b))^-1(6%) 4.Solve the given system of ODE using the method involving matrix analysis:(10%) y1'=4y2+9t y2'=-4y1+5 5.You are given the following matrix A:(15%) 2 2 1 A=[1 3 1] 1 2 2 (1)Find the eigenvalues and eigenvectors of AX=λX. (2)If A is similar to D(a diagonal matrix), waht is the transition matrix P and its inverse P^-1? (3)Please show A^5 註:欲電子檔請站內信聯絡 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.245.85