精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰微積分乙下 課程性質︰必修 課程教師︰王藹農 開課學院:社科院 開課系所︰ 考試日期(年月日)︰99/06/22 考試時限(分鐘):110 (0810~1000) 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : (範圍:Larson & Edward, Calculus, 9e, 13.9 Lagrange Multiplier - end) (Ch.14 Multiple Integration Ch.15 Vector Analysis) 1. Find the highest point on the curve of intersection of the surfaces 2 2 2 x + y + z = 4 , x+2y+3z=6 (5/50) 4 2 3 2.∫∫ ---------- dydx=? (5/50) 0 √x 2+y^3 2 4 √(y^2-4x^2) ? ? ? 3.∫∫ ∫ f(x,y,z) dzdydx = ∫∫∫ f(x,y,z)dxdydz (5/50) 0 2x 0 ? ? ? 1 1-u dv 4.∫ (∫ ------------- ) du =? (5/50) 1/2 0 1-u^2+v^2 -x -2x ∞ e - e 5.∫ ------------- dx =? (5/50) 0 x 2 2 2 2 x y 6. Io = inertia = ∫∫ (x + y ) dxdy =? where region R={ --- + --- ≦ 1} R 2 2 a b (5/50) 7.∮(2x-3y+1)dx -(3x+y-5)dy =? where loop c = c triangle from (0,0) to (2,3) to (4,1) and back to (0,0) (5/50) -y dx + x dy 2 2 8. ∮ ----------------= ? where loop c = {x + (y-1) =4} (5/50) 2 2 oriented counterclockwise. x + y → → → → → 9. r = r (u,v) = ucosv i + usinv j + 2v k , 0≦u≦3, 0≦v≦2π, surface area = ? (5/50) dz 10.∫ y dx + x dy + ---- = ? where c =curve from (0,0,1) to (4,4,4) c z but not necessarily be the straight line segment. (5/50) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.240.193