精華區beta NTU-Exam 關於我們 聯絡資訊
課程名稱︰工程數學下 課程性質︰必修 課程教師︰伍次寅 開課學院:工學院 開課系所︰機械系 考試日期(年月日)︰2010.6.21 考試時限(分鐘):130分鐘 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : 1.(3%)Write down the real and imaginary parts of the following complex numbers Give all distinct values if it is multi-valued. (i) (ii) (iii) 2/3 sim(2+3i) i^(1+i) [ -1+√3i ] [ ̄ ̄ ̄ ̄ ̄] [ 1+i ] 2.(3%)Determine if each of the following complex function is analytic in the the region |z|< ∞. If not, give the point(s) where it is not analytic. (i) (ii) (iii) 2 z^2 + 9 f(z)=|z| f(z)=  ̄ ̄ ̄ ̄ ̄ ̄ ̄ e^ln(iz) z[z^2+(2-3i)z-6i] 3.(6%)Find all singularities of the following complex function and classify their types. If the singularity is a pole, give the order of the pole (i) 2 z^2 + z + 1 1-e^(iz) f(z)= z sin(1/z-i) (ii) f(z) =  ̄ ̄ ̄ ̄ ̄ ̄ ̄ (iii) f(z)=  ̄ ̄ ̄ ̄ ̄ ̄ z^2 -iz +2 (z+3)*z^2 4.(6%) Find the Taylor expansion(problem(i)) and Laurent expansion (problem(ii)) about the point z=a and give the range of convergence of the series in each case. (i) (ii) z+i f(z)=ze^(iz),a=2 f(z)=  ̄ ̄ ̄ ̄ ̄ ̄ , a=-1 (z+1)^2 (z-i) (<hint>: rewrite f(z) as 1 z+i z+i  ̄ ̄ ̄ ̄ *  ̄ ̄ ̄ and expand  ̄ ̄ ̄ about -1) (z+1)^2 z-i z-i 5.(4%) Determine the residue at each singular point of the following complex function: (i) e^(-z) (ii) cos(z) f(z)=  ̄ ̄ ̄ ̄ ̄ f(z)=  ̄ ̄ ̄ ̄ ̄ z(z+i)^2 z^4 (1-z) 6.(6%) Evaluate the following comlex integrals: (i) z+1 ∮  ̄ ̄ ̄ ̄ ̄ dz Γ:|z+(1+2i)|=2 Γ z(z+2i)^2 (ii) _ e^(-iz) ∮  ̄_ ̄ ̄ ̄ dz Γ: |z|=1 Γ z 7.(4%)Evaluate the following real integrals by using the complex integration technique: (i) 2π dθ ∫  ̄ ̄ ̄ ̄ ̄ ̄ ̄ with 0<a<1 0 1-2acosθ+a^2 (ii) +∞ √x ∫  ̄ ̄ ̄ ̄ ̄ ̄ dx 0 x^2 +3x +2 8.(4%) 2 d:偏微 (i) du d u solve —— = α ——— for 0<x<∞, t>0 subject to dt dx^2 BC: u(0,t)=1, IC: u(x,0)=0; by using the Fourier transform (or cosine, sine transforms) method (other method are not allowed). Write down your final result in terms of the original physical variable (x,t). (ii)What is the expression of the solution when t → ∞ ? 2 2 9.(4%) d y 2 d y Solve ——— = a ——— for -∞ < x < ∞ , t>0 subject to dt^2 dx^2 dy(x.0) IC's : y(x,0)=H(x+1)-H(x-1), ————— =0; dt by using the Fourier transform(or cosine,sine transforms) method (other method are not allowable). Write down your final result in terms of the original physical variable (x,t) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.211.152