精華區beta NTUBSE-B-99 關於我們 聯絡資訊
作者 ayabf (森~) 看板 NTU-Exam 標題 [試題] 97上 周青松 微積分甲上 期末考 時間 Tue Jan 13 16:29:34 2009 ─────────────────────────────────────── 課程名稱︰微積分甲上 課程性質︰微積分 課程教師︰周青松 開課學院: 開課系所︰生工 地質 工管 考試日期(年月日)︰98.1.9 考試時限(分鐘): 8:20~10:00 是否需發放獎勵金:是 (如未明確表示,則不予發放) 試題 : I. A) Let f be a function such that f' is continuous on[a,b]. Show that b ∫ f(t)f'(t)dt =1/2[f^2(b)-f^2(a)] a   B) Find f from the information given: f"(x)=sinx , f'(0)=-2 ,f(0)=1 A) Calculate 2x ______ d/dx (∫ t√1+t^2 dt) tanx B) x Find H'(3) given that H(x)= 1/x∫ [2t-3H'(t)]dt 3 III. Find the volume of the solid generated by revolving the region between y=x^2 and y=2x A) about the x-axis. B) about the y-axis. IV. Taking a>0. ___________ A) Calculate ∫1/√a^2-(x+b)^2 dx B) Calculate ∫1/[a^2+(x+b)^2] dx V. A) Verify that y=Acoshcx+Bsinhcx satisfies the equation y"-c^2 y=0 _______ -1 B) Verify the formula:∫1/√x^2-a^2 dx = cosh (x/a)+c ,a>0