精華區beta NTUCH-HW 關於我們 聯絡資訊
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import numpy as np import matplotlib.pyplot as plt mnist=input_data.read_data_sets("MNIST_d",one_hot=False) batch_size=100 n_batch=mnist.train.num_examples//batch_size x=tf.placeholder(tf.float32,[None,784]) y=tf.placeholder(tf.float32,[None,10]) #creat NN W=tf.Variable(tf.zeros([784,10])) b=tf.Variable(tf.zeros([10])) prediction=tf.nn.softmax(tf.matmul(x,W)+b) loss=tf.reduce_mean(tf.square(y-prediction)) train_step=tf.train.GradientDescentOptimizer(0.2).minimize(loss) init=tf.global_variables_initializer() corpre=tf.equal(tf.arg_max(y,1),tf.arg_max(prediction,1)) accuracy=tf.reduce_mean(tf.cast(corpre,tf.float32)) with tf.Session() as sess: sess.run(init) for epoch in range(21): for batch in range(n_batch): batch_xs,batch_ys=mnist.train.next_batch(batch_size) sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys}) acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}) print("Iter"+str(epoch)+",testing accuracy"+str(acc))