精華區beta NTUCH-HW 關於我們 聯絡資訊
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import numpy as np import matplotlib.pyplot as plt mnist=input_data.read_data_sets("MNIST_d",one_hot=True) batch_size=100 n_batch=mnist.train.num_examples//batch_size x=tf.placeholder(tf.float32,[None,784]) y=tf.placeholder(tf.float32,[None,10]) #creat NN keep_prob=tf.placeholder(tf.float32) lr=tf.Variable(0.001,dtype=tf.float32) W1=tf.Variable(tf.truncated_normal([784,500],stddev=0.1)) b1=tf.Variable(tf.zeros([500])+0.1) L1=tf.nn.tanh(tf.matmul(x,W1)+b1) L1_drop=tf.nn.dropout(L1,keep_prob) W2=tf.Variable(tf.truncated_normal([500,300],stddev=0.1)) b2=tf.Variable(tf.zeros([300])+0.1) L2=tf.nn.tanh(tf.matmul(L1_drop,W2)+b2) L2_drop=tf.nn.dropout(L2,keep_prob) W3=tf.Variable(tf.truncated_normal([300,10],stddev=0.1)) b3=tf.Variable(tf.zeros([10])+0.1) prediction=tf.nn.softmax(tf.matmul(L2_drop,W3)+b3) loss=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) train_step=tf.train.AdamOptimizer(lr).minimize(loss) init=tf.global_variables_initializer() corpre=tf.equal(tf.arg_max(y,1),tf.arg_max(prediction,1)) accuracy=tf.reduce_mean(tf.cast(corpre,tf.float32)) with tf.Session() as sess: sess.run(init) for epoch in range(21): sess.run(tf.assign(lr,0.001*(0.95**epoch))) for batch in range(n_batch): batch_xs,batch_ys=mnist.train.next_batch(batch_size) sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0}) learning_rate=sess.run(lr) acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0}) print("Iter"+str(epoch)+",testing accuracy"+str(acc)+",learningrate"+str(learning_rate))