精華區beta NTUCH-HW 關於我們 聯絡資訊
from keras.models import Sequential from keras.layers import Dense classifier = Sequential() classifier.add(Dense(units = 20, kernel_initializer = 'uniform', activation = 'relu')) classifier.add(Dense(units=2, kernel_initializer='normal', activation='softmax')) classifier.compile(optimizer = 'rmsprop', loss = 'binary_crossentropy', metrics = ['accuracy']) classifier.fit(X_train, y_train, batch_size = 1, epochs = 100) import pandas as pd import numpy as np import seaborn as sns from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn import metrics from sklearn.metrics import confusion_matrix df = pd.read_csv('voice.csv') X=df.iloc[:, :-1] X1=df.drop(df.columns[[0,2,3,20]],axis=1) Y=df.iloc[:, -1:] gender_encoder = LabelEncoder() y = gender_encoder.fit_transform(Y) scaler = StandardScaler() scaler.fit(X1) X = scaler.transform(X1) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1) https://www.kaggle.com/javapocalypse/breast-cancer-classification-in-keras- using-ann