精華區beta Physics 關於我們 聯絡資訊
作者 黃彥傑。 黃彥傑聲明:完全放棄本網頁之版權。 本畫面之網址是: http://mavang2.tripod.com/square/index.txt 歡迎來信 mailto:zyeks@excite.com 我是黃彥傑,畢業於民國76年, 於民國72年至76年就讀於中山大學電機系,校長是李煥先生,李煥先生曾經當過行政院長, 別人( 釋迦牟尼佛、愛因斯坦)說的法都不夠究竟!只有我黃彥傑現在準備要說的才是究竟 圓滿! 我將要解說一切世界、宇宙的真實結構,含一切物質世界、精神世界! 能究竟圓滿解釋一切的'統一哲學'! 我將這個統一哲學稱作'squares theory'('正方形理論'), 正方形理論中含有'圖示'、'敘述'兩部份, 正方形理論有一點類似太極,正方形理論之基本道理是binary(二元的), 二元之兩者是彼此complementary的(彼此相反的,彼此補足的), 比如,羅漢、菩薩兩者是binary(二元的),兩者是彼此complementary的(彼此相反的,彼此補 足的), 另外,二元之兩者彼此'必定'是處於平等ranking(地位,名次,果位)! 因此,羅漢、菩薩兩者彼此'必定'是處於平等ranking(地位,名次,果位)! squares theory認定說: '一切菩薩平等!這個菩薩與那個菩薩之分別是妄分別! 這個菩薩與那個菩薩同樣是平等的菩薩果位ranking!' '一切羅漢平等!這個羅漢與那個羅漢之分別是妄分別! 這個羅漢與那個羅漢同樣是平等的羅漢果位ranking!' 我再簡述一次:binary之兩者是彼此complementary的,但是處於平等ranking! 每一個square當然有四邊,我規定每一邊的邊長(之相對值)一定是1! 因此每一個square面積都是1, 一切square都是以兩種'小矩形'來指出一個'物質'或'精神'體 在特定之'時'(time)、'處'(site)的'法', 我規定用黑白兩色來代表兩種小矩形, '法'只有兩種,即是黑白兩種小矩形, 當然,這兩種法(或黑白兩種小矩形)之兩者是彼此complementary的, 一個square內之小矩形的'種類'雖然只有兩種, 但是一個square內之黑白小矩形之'數目'極多, 黑色小矩形之面積總合一定是1/2, 白色小矩形之面積總合一定是1/2, 上述之 '時'是一個'物質'或'精神'體之週期的開始之時至結束之時, 上述之 '處'是一個'物質'或'精神'體之體係的底端之處至頂端之處,(或 體積) square可用笛卡兒座標系來標示其'時'(time)、'處'(site), 我規定 square之最左下角必須置於笛卡兒座標系之(0,0)點, square之最下邊必須與笛卡兒座標系之+X axis 重疊,在+X axis的(0,0)點至(1,0)點, square之最左邊必須與笛卡兒座標系之+Y axis 重疊,在+Y axis的(0,0)點至(0,1)點, 我規定 +X axis是t axis,t是time,from 0 to 1, +Y axis是s axis,s是site,from 0 to 1, square四邊之意義- 最左邊:t=0,time是在一個週期的開始之時,而s,site則是from 0 to 1,此邊是from(0,0)點to(0,1) 點, 最右邊:t=1,time是在一個週期的結束之時,而s,site則是from 0 to 1,此邊是from(1,0)點to(1,1) 點, 最下邊:s=0,site是在一個體係的底端之處,而t,time則是from 0 to 1,此邊是from(0,0)點to(1,0) 點, 最上邊:s=1,site是在一個體係的頂端之處,而t,time則是from 0 to 1,此邊是from(0,1)點to(1,1) 點, 注意:s和t之'相對值'都是from 0 to 1,可是'實際值'視實際之週期與體係而定, X_1 square之圖示:見[圖示x1] Y_1 square之圖示:見[圖示y1] [圖示x1]: http://mavang2.tripod.com/square/x1.bmp Y-axis | | |(0,1) (1,1) |________________________________________________________________ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | black | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |________________________________________________________________|_X-axis (0,0) (1,0) [圖示y1]: http://mavang2.tripod.com/square/y1.bmp Y-axis | | |(0,1) (1,1) |________________________________________________________________ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | white | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |________________________________________________________________|_X-axis (0,0) (1,0) Higher ranking rule: X_(n+1)=X_n.Y_n. (式子A); Y_(n+1)=Y_n+X_n+ (式子B); for n=1 to positive infinity ; 狄摩根定律: (.)'=(+) (+)'=(.) (X_n)'=(Y_n) (Y_n)'=(X_n) [X_(n+1)]'=[X_n.Y_n.]'= Y_n+X_n+ = Y_(n+1) , [Y_(n+1)]'=[Y_n+X_n+]'= X_n.Y_n. = X_(n+1) , 比如: X_2=X_1.Y_1. , Y_2=Y_1+X_1+ , X_3=X_2.Y_2. , Y_3=Y_2+X_2+ , 以此類推,所以,這是recursive(遞歸的,反覆的,循環的)規則, 二元之兩者彼此'必定'是處於平等ranking(地位,名次,果位), 比如X_2和Y_2是二元之兩者,是彼此complementary的(彼此相反的,彼此補足的), 彼此'必定'是處於平等ranking(地位,名次,果位), 可是(n+1)和n比較時, X_(n+1)和Y_(n+1)是上級,higher ranking, X_n 和Y_n 是下級,lower ranking, 上級與下級是不平等的, 上級,higher ranking的果位比較高, 下級,lower ranking的果位比較低, 現在我要解釋 { X_2=X_1.Y_1. } 之意義,請先看X_2 square之幾個例子之圖示, 這幾個例子之圖示在下面的[圖示x2],[圖示x2-2],[圖示x2-3]中, [圖示x2]: http://mavang2.tripod.com/square/x2.bmp Y-axis | | |(0,1) (1/2,1) (1,1) |_________________________________________________________________ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | black | white | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |________________________________|________________________________|_X-axis (0,0) (1/2,0) (1,0) [圖示x2-2]: http://mavang2.tripod.com/square/x2-2.bmp Y-axis | | |(0,1) (1/2,1) (1,1) |_________________________________________________________________ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | white | black | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |________________________________|________________________________|_X-axis (0,0) (1/2,0) (1,0) [圖示x2-3]: http://mavang2.tripod.com/square/x2-3.bmp Y-axis | | |(0,1) (1/4,1) (1/2,1) (3/4,1) (1,1) |___________________________________________________________________ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | black | white | black | white | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |________________|________________|________________|________________|_X-axis (0,0) (1/4,0) (1/2,0) (3/4,0) (1,0) 在上面的[圖示x2]、[圖示x2-2]、[圖示x2-3]的X_2 square之中,其 黑色矩形當然是來自(全黑的)X_1 square, 白色矩形當然是來自(全白的)Y_1 square, X_2 square都必須合於下述兩個規矩: 第一,X_2 square之中, 每個黑色矩形,其time不管分佈在甚麼時段,其site分佈規矩是from 0 to 1而不間斷, 每個白色矩形,其time不管分佈在甚麼時段,其site分佈規矩是from 0 to 1而不間斷, 第二,X_2 square之中, 黑色矩形面積總合一定是1/2, 白色矩形面積總合一定是1/2, 只要是合於上述兩個規矩的square,便都是代表 { X_2=X_1.Y_1. } 之X_2 square! [圖示x2]、[圖示x2-2]、[圖示x2-3]的三種X_2 square都是平等的X_2 ranking! 現在我要解釋 { Y_2=Y_1+X_1+ } 之意義,請先看Y_2 square之幾個例子之圖示, 這幾個例子之圖示在下面的[圖示y2],[圖示y2-2],[圖示y2-3]中, [圖示y2]: http://mavang2.tripod.com/square/y2.bmp Y-axis | | |(0,1) (1,1) |________________________________________________________________ | | | | | | | | | | | | | | | | | black | | | | | | | | | | | | | | | |________________________________________________________________|(1,1/2) | | | | | | | | | | | | | | | | | white | | | | | | | | | | | | | |________________________________________________________________|_X-axis (0,0) (1,0) [圖示y2-2]: http://mavang2.tripod.com/square/y2-2.bmp Y-axis | | |(0,1) (1,1) |________________________________________________________________ | | | | | | | | | | | | | | | | | white | | | | | | | | | | | | | | | |________________________________________________________________|(1,1/2) | | | | | | | | | | | | | | | | | black | | | | | | | | | | | | | |________________________________________________________________|_X-axis (0,0) (1,0) [圖示y2-3]: http://mavang2.tripod.com/square/y2-3.bmp Y-axis | | |(0,1) (1,1) |________________________________________________________________ | | | | | | | | | black | | | | | | | |________________________________________________________________|(1,3/4) | | | | | | | | | white | | | | | | | |________________________________________________________________|(1,1/2) | | | | | | | | | black | | | | | | | |________________________________________________________________|(1,1/4) | | | | | | | white | | | | | | | |________________________________________________________________|_X-axis (0,0) (1,0) 在上面的[圖示y2]、[圖示y2-2]、[圖示y2-3]的Y_2 square之中,其 黑色矩形當然是來自(全黑的)X_1 square, 白色矩形當然是來自(全白的)Y_1 square, Y_2 square都必須合於下述兩個規矩: 第一,Y_2 square之中, 每個黑色矩形,其site不管分佈在甚麼地段,其time分佈規矩是from 0 to 1而不間斷, 每個白色矩形,其site不管分佈在甚麼地段,其time分佈規矩是from 0 to 1而不間斷, 第二,Y_2 square之中, 黑色矩形面積總合一定是1/2, 白色矩形面積總合一定是1/2, 只要是合於上述兩個規矩的square,便都是代表 { Y_2=Y_1+X_1+ } 之Y_2 square! [圖示y2]、[圖示y2-2]、[圖示y2-3]的三種Y_2 square都是平等的Y_2 ranking! 現在我要說如何看懂square所代表之法, 以[圖示y2]Y_2 square作例子, 若設定 X_1 square是'貪嗔癡', Y_1 square是'戒定慧', 則 Y_2 square之下面白色矩形代表: 在一天的24小時中,持續於下半身作'戒定慧'之法, Y_2 square之上面黑色矩形代表: 在一天的24小時中,持續於上半身作'貪嗔癡'之法, 佛教說佛陀有法身佛、報身佛、化身佛三種, Y_2 square代表某一種佛陀, 至於Y_2 square是否為報身佛,我則不清楚, X_2 square之圖示:見[圖示x2], Y_2 square之圖示:見[圖示y2], [圖示x2]: http://mavang2.tripod.com/square/x2.bmp Y-axis | | |(0,1) (1/2,1) (1,1) |_________________________________________________________________ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | black | white | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |________________________________|________________________________|_X-axis (0,0) (1/2,0) (1,0) [圖示y2]: http://mavang2.tripod.com/square/y2.bmp Y-axis | | |(0,1) (1,1) |________________________________________________________________ | | | | | | | | | | | | | | | | | black | | | | | | | | | | | | | | | |________________________________________________________________|(1,1/2) | | | | | | | | | | | | | | | | | white | | | | | | | | | | | | | |________________________________________________________________|_X-axis (0,0) (1,0) X_3 square之圖示:見[圖示x3] Y_3 square之圖示:見[圖示y3] [圖示x3]: http://mavang2.tripod.com/square/x3.bmp Y-axis | | |(0,1) (1/4,1) (1/2,1) (1,1) |__________________________________________________________________ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | black | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |________________________________| | black | white | (1,1/2)| | | | | | | | | | | | | | | | | | | | | | | | white | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |________________|________________|________________________________|_X-axis (0,0) (1,0) [圖示y3]: http://mavang2.tripod.com/square/y3.bmp Y-axis | | |(0,1) (1/2,1) (1,1) |_________________________________________________________________ | | | | | | | | | | | | | | | | | | | | | | black | white | | | | | | | | | | | | | | | | | | | | | | | | | |________________________________|________________________________|(1,1/2) | | | | | | | | | black | | | | | | | |_________________________________________________________________|(1,1/4) | | | | | | | white | | | | | | | |_________________________________________________________________|_X-axis (0,0) (1,0) 下述之四個圖示步驟可用來表示complementary的兩者之間的干係, 我要以X_3 square[圖示x3]和Y_3 square[圖示y3]作例子, 當然,X_3 square和Y_3 square兩者是彼此complementary的, 第一. 本來是X_3 square 見[圖示x3] [圖示x3]: http://mavang2.tripod.com/square/x3.bmp Y-axis | | |(0,1) (1/4,1) (1/2,1) (1,1) |__________________________________________________________________ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | black | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |________________________________| | black | white | (1,1/2)| | | | | | | | | | | | | | | | | | | | | | | | white | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |________________|________________|________________________________|_X-axis (0,0) (1,0) 第二. 將X_3 square 翻轉或旋轉: 旋轉角度: 270度: 見[圖示c-1] [圖示c-1]: http://mavang2.tripod.com/square/c-1.bmp Y-axis | | |(0,1) (1/2,1) (1,1) |_________________________________________________________________ | | | | | | | | | | | | | | | | | | | | | | black | white | | | | | | | | | | | | | | | | | | | | | | | | | |________________________________|________________________________|(1,1/2) | | | | | | | | | white | | | | | | | |_________________________________________________________________|(1,1/4) | | | | | | | black | | | | | | | |_________________________________________________________________|_X-axis (0,0) (1,0) 第三. 將c-1 square 翻轉或旋轉: 水平翻轉: 見[圖示c-2] [圖示c-2]: http://mavang2.tripod.com/square/c-2.bmp Y-axis | | |(0,1) (1/2,1) (1,1) |_________________________________________________________________ | | | | | | | | | | | | | | | | | | | | | | white | black | | | | | | | | | | | | | | | | | | | | | | | | | |________________________________|________________________________|(1,1/2) | | | | | | | | | white | | | | | | | |_________________________________________________________________|(1,1/4) | | | | | | | black | | | | | | | |_________________________________________________________________|_X-axis (0,0) (1,0) 第四. 將c-2 square 色彩對換: 見[圖示c-3] [圖示c-3]: http://mavang2.tripod.com/square/c-3.bmp Y-axis | | |(0,1) (1/2,1) (1,1) |_________________________________________________________________ | | | | | | | | | | | | | | | | | | | | | | black | white | | | | | | | | | | | | | | | | | | | | | | | | | |________________________________|________________________________|(1,1/2) | | | | | | | | | black | | | | | | | |_________________________________________________________________|(1,1/4) | | | | | | | white | | | | | | | |_________________________________________________________________|_X-axis (0,0) (1,0) [圖示c-3]即是Y_3 square! 由於 (X_3)'=(Y_3) , (Y_3)'=(X_3) , 故上述之四個圖示步驟,亦能使第一.步驟中的Y_3 square,於第四.步驟中形成X_3 square! 因果律: 若因是X_n,則果是Y_n, 若因是Y_n,則果是X_n, 已知:羅漢、菩薩兩者是X_2、Y_2,則 X_2:菩薩, Y_2:羅漢, X_3:魔, Y_3:辟支佛, X_4:眾生,(不可思議解脫三昧)(請參考 維摩詰所說經) Y_4:佛陀, 已知:羅漢、菩薩兩者是X_3、Y_3,則 X_3:菩薩, Y_3:羅漢, X_4:魔, Y_4:辟支佛, X_5:眾生, Y_5:佛陀, 羅漢可以當作是Y_2,或Y_3,或Y_4,或Y_5,以此類推, 於是辟支佛便是Y_3,或Y_4,或Y_5,或Y_6,以此類推, X_n和Y_n不可對換,因X_n是(..),Y_n是(++), 菩薩、魔、眾生 都是X_n,不是Y_n, 羅漢、辟支佛、佛陀都是Y_n,不是X_n, 佛陀並不是法界中的最高尊者! 在佛陀之上還有更高ranking(地位,名次,果位)的上級尊者,比如菩提心普作王, 菩提心普作王是'遍作王續'的'遍作王尊者', 菩提心普作王之果位是'法界遍行地',佛陀眾生不二或不相屬, 當然菩提心普作王之上還有更高ranking(地位,名次,果位)的上級尊者, 法界的真相是這樣的:越是上級,higher ranking,越是正法! 上面我說一個square內, 黑色小矩形之面積總合一定是1/2, 白色小矩形之面積總合一定是1/2, 可是X_1,Y_1看起來似乎不是如此, 事實上, X_1=X_0.Y_0. , Y_1=Y_0+X_0+ , X_0=X_-1.Y_-1. , Y_0=Y_-1+X_-1+ , 以此類推, 到 負無限大 ; X_0和Y_0以及其下級,都不再有黑白兩種小矩形, 於是,改顏色便可以了,比如 令 X_-100 是全綠色, Y_-100 是全紅色, X_1仍然是全黑色, Y_1仍然是全白色, 便OK! -- [圖示x2],[圖示x2-2],[圖示x2-3]都可以代表X_2,可是只有[圖示x2]能被稱做X_2之'典型正 方形', [圖示x2-2]、[圖示x2-3]都不是X_2之'典型正方形', 每個X_n只有一個'典型正方形',每個Y_n只有一個'典型正方形', for n=negative infinity to positive infinity. 對應於典型正方形,我要定義'Z函數'(Z function),Z函數之'定義域'(domain)是D, D={(x,y)|0小於等於x小於1 and 0小於等於y小於1 and x is real number and y is real number.} Z函數之'值'(value)只能是-1/2或+1/2! 因Z函數之定義域是D, 故Z函數沒有值,若0大於x,或1小於等於x,或0大於y,或1小於等於y, Z_X_n是一個'Z函數', If n=1,Z_X_n(x,y)=Z_X_1(x,y)=-1/2,for ALL points in D, Z_Y_n是一個'Z函數', If n=1,Z_Y_n(x,y)=Z_Y_1(x,y)=+1/2,for ALL points in D, 因X_1 square是全黑的正方形,而且Z_X_1(x,y)=-1/2,故 每個X_n之典型正方形內之黑色矩形區域內之ALL points之Z函數之值,都是-1/2, 每個Y_n之典型正方形內之黑色矩形區域內之ALL points之Z函數之值,都是-1/2, for n=2 to positive infinity. 因Y_1 square是全白的正方形,而且Z_Y_1(x,y)=+1/2,故 每個X_n之典型正方形內之白色矩形區域內之ALL points之Z函數之值,都是+1/2, 每個Y_n之典型正方形內之白色矩形區域內之ALL points之Z函數之值,都是+1/2, for n=2 to positive infinity. 因X_(n+1)=X_n.Y_n. 故 Z_X_(n+1)(x,y)=Z_X_n(2x,y)+Z_Y_n(2x-1,y), If n=1 and 0小於等於x小於1/2 and 0小於等於y小於1,Z_X_(n+1)(x,y)=Z_X_n(2x,y)=Z_X_1(2x,y)= -1/2. If n=1 and 1/2小於等於x小於1 and 0小於等於y小於1,Z_X_(n+1)(x,y)=Z_Y_n(2x-1,y)=Z_Y_1(2x-1,y)=+1/2. 因Y_(n+1)=Y_n+X_n+ 故 Z_Y_(n+1)(x,y)=Z_Y_n(x,2y)+Z_X_n(x,2y-1), If n=1 and 0小於等於y小於1/2 and 0小於等於x小於1,Z_Y_(n+1)(x,y)=Z_Y_n(x,2y)=Z_Y_1(x,2y)= +1/2. If n=1 and 1/2小於等於y小於1 and 0小於等於x小於1,Z_Y_(n+1)(x,y)=Z_X_n(x,2y-1)=Z_X_1(x,2y-1)=-1/2. 接著, 因 X_(n+2)=X_(n+1).Y_(n+1). 故 Z_X_(n+2)(x,y)= Z_X_(n+1)(2x,y)+Z_Y_(n+1)(2x-1,y)= [Z_X_n(4x,y)+Z_Y_n(4x-1,y)]+[Z_Y_n(2x-1,2y)+Z_X_n(2x-1,2y-1)], 令n=1,X_(n+2)=X_3,[圖示x3]是X_3之典型正方形, (1). If 0小於等於x小於1/4 and 0小於等於y小於1,then 0小於等於4x小於1 and 0小於等於y小 於1, Z_X_3(x,y)=Z_X_(n+2)(x,y)=Z_X_n(4x,y)=Z_X_1(4x,y)=-1/2. 在[圖示x3]內, {(x,y)|0小於等於x小於1/4 and 0小於等於y小於1} 是從左邊開始算起第一個黑色矩形區域, 此區域是黑色矩形區域,故此區域內之ALL points之Z函數之值,都是-1/2, (2). If 1/4小於等於x小於1/2 and 0小於等於y小於1,then 0小於等於4x-1小於1 and 0小於等於y 小於1, Z_X_3(x,y)=Z_X_(n+2)(x,y)=Z_Y_n(4x-1,y)=Z_Y_1(4x-1,y)=+1/2. 在[圖示x3]內, {(x,y)|1/4小於等於x小於1/2 and 0小於等於y小於1} 是從左邊開始算起第一個白色矩形區域, 此區域是白色矩形區域,故此區域內之ALL points之Z函數之值,都是+1/2, (3). If 1/2小於等於x小於1 and 0小於等於y小於1/2,then 0小於等於2x-1小於1 and 0小於等於2y 小於1, Z_X_3(x,y)=Z_X_(n+2)(x,y)=Z_Y_n(2x-1,2y)=Z_Y_1(2x-1,2y)=+1/2. 在[圖示x3]內, {(x,y)|1/2小於等於x小於1 and 0小於等於y小於1/2} 是從左邊開始算起第二個白色矩形區域, 此區域是白色矩形區域,故此區域內之ALL points之Z函數之值,都是+1/2, (4). If 1/2小於等於x小於1 and 1/2小於等於y小於1,then 0小於等於2x-1小於1 and 0小於等於2y-1 小於1, Z_X_3(x,y)=Z_X_(n+2)(x,y)=Z_X_n(2x-1,2y-1)=Z_X_1(2x-1,2y-1)=-1/2. 在[圖示x3]內, {(x,y)|1/2小於等於x小於1 and 1/2小於等於y小於1} 是從左邊開始算起第二個黑色矩形區域, 此區域是黑色矩形區域,故此區域內之ALL points之Z函數之值,都是-1/2, 接著, 因 Y_(n+2)=Y_(n+1)+X_(n+1)+ 故 Z_Y_(n+2)(x,y)= Z_Y_(n+1)(x,2y) +Z_X_(n+1)(x,2y-1)= [Z_Y_n(x,4y)+Z_X_n(x,4y-1)]+[Z_X_n(2x,2y-1)+Z_Y_n(2x-1,2y-1)], 令n=1,Y_(n+2)=Y_3,[圖示y3]是Y_3之典型正方形, (1). If 0小於等於y小於1/4 and 0小於等於x小於1,then 0小於等於4y小於1 and 0小於等於x小 於1, Z_Y_3(x,y)=Z_Y_(n+2)(x,y)=Z_Y_n(x,4y)=Z_Y_1(x,4y)=+1/2. 在[圖示y3]內, {(x,y)|0小於等於y小於1/4 and 0小於等於x小於1} 是從下邊開始算起第一個白色矩形區域, 此區域是白色矩形區域,故此區域內之ALL points之Z函數之值,都是+1/2, (2). If 1/4小於等於y小於1/2 and 0小於等於x小於1,then 0小於等於4y-1小於1 and 0小於等於x 小於1, Z_Y_3(x,y)=Z_Y_(n+2)(x,y)=Z_X_n(x,4y-1)=Z_X_1(x,4y-1)=-1/2. 在[圖示y3]內, {(x,y)|1/4小於等於y小於1/2 and 0小於等於x小於1} 是從下邊開始算起第一個黑色矩形區域, 此區域是黑色矩形區域,故此區域內之ALL points之Z函數之值,都是-1/2, (3). If 1/2小於等於y小於1 and 0小於等於x小於1/2,then 0小於等於2y-1小於1 and 0小於等於2x 小於1, Z_Y_3(x,y)=Z_Y_(n+2)(x,y)=Z_X_n(2x,2y-1)=Z_X_1(2x,2y-1)=-1/2. 在[圖示y3]內, {(x,y)|1/2小於等於y小於1 and 0小於等於x小於1/2} 是從下邊開始算起第二個黑色矩形區域, 此區域是黑色矩形區域,故此區域內之ALL points之Z函數之值,都是-1/2, (4). If 1/2小於等於y小於1 and 1/2小於等於x小於1,then 0小於等於2y-1小於1 and 0小於等於2x-1 小於1, Z_Y_3(x,y)=Z_Y_(n+2)(x,y)=Z_Y_n(2x-1,2y-1)=Z_Y_1(2x-1,2y-1)=+1/2. 在[圖示y3]內, {(x,y)|1/2小於等於y小於1 and 1/2小於等於x小於1} 是從下邊開始算起第二個白色矩形區域, 此區域是白色矩形區域,故此區域內之ALL points之Z函數之值,都是+1/2, -- 上面有說到典型正方形與Z函數, 現在我要說任何一個正方形與Z函數, 以X_2來說, [圖示x2],[圖示x2-2],[圖示x2-3]都可以代表X_2,可是只有[圖示x2]能被稱做X_2之'典型正 方形', 對應於'典型正方形'(typical square),我們可以定義'Z函數',如下所說: 因X_(n+1)=X_n.Y_n. 故 Z_X_(n+1)(x,y)=Z_X_n(2x,y)+Z_Y_n(2x-1,y), 因Y_(n+1)=Y_n+X_n+ 故 Z_Y_(n+1)(x,y)=Z_Y_n(x,2y)+Z_X_n(x,2y-1), 而對應於可以代表X_2之任何一個正方形,恰好有一個Z函數存在, 已知 Z_X_n(x,y)是X_n之Z函數,Z_Y_n(x,y)是Y_n之Z函數,(x,y)是笛卡兒座標系內的點, Z函數之'定義域'(domain)是D, D={(x,y)|0小於等於x小於1 and 0小於等於y小於1 and x is real number and y is real number.} 令n=1, Z_X_n(x,y)=Z_X_1(x,y)=-1/2,for ALL points in D, Z_Y_n(x,y)=Z_Y_1(x,y)=+1/2,for ALL points in D, (甲). X_(n+1)=[X_n.Y_n.] Z_X_(n+1)(x,y)是X_(n+1)之Z函數, 我要以Z_X_n(x,y)和Z_Y_n(x,y)來表示Z_X_(n+1)(x,y), t_i是在X axis之時間,i是其索引, t_i is real number and 0小於等於t_i小於等於1 for all i, where i is integer and 1小於等於i小於等於m, 3小於等於m, t_1=0,t_m=1, t_1小於t_2, t_2小於t_3, t_3小於t_4, ...etc... t_(m-1)小於t_m, (一). 若m是奇數正數, Z_X_(n+1)(x,y)只可以是下列二種函數中的某一種: 第一種函數: if Z_X_(n+1)(x,y)=Z_X_n((x-t_1)/(t_2-t_1),y), where t_1小於等於x小於t_2 and 0小於等於y小於1, then Z_X_(n+1)(x,y)=Z_X_n((x-t_1)/(t_2-t_1),y), where t_1小於等於x小於t_2 and 0小於等於y小於1; and Z_X_(n+1)(x,y)=Z_X_n((x-t_3)/(t_4-t_3),y), where t_3小於等於x小於t_4 and 0小於等於y小於1; and Z_X_(n+1)(x,y)=Z_X_n((x-t_5)/(t_6-t_5),y), where t_5小於等於x小於t_6 and 0小於等於y小於1; ...etc... and Z_X_(n+1)(x,y)=Z_X_n((x-t_(m-2))/(t_(m-1)-t_(m-2)),y), where t_(m-2)小於等於x小於t_(m-1) and 0小於等於y小於1; and Z_X_(n+1)(x,y)=Z_Y_n((x-t_2)/(t_3-t_2),y), where t_2小於等於x小於t_3 and 0小於等於y小於1; and Z_X_(n+1)(x,y)=Z_Y_n((x-t_4)/(t_5-t_4),y), where t_4小於等於x小於t_5 and 0小於等於y小於1; and Z_X_(n+1)(x,y)=Z_Y_n((x-t_6)/(t_7-t_6),y), where t_6小於等於x小於t_7 and 0小於等於y小於1; ...etc... and Z_X_(n+1)(x,y)=Z_Y_n((x-t_(m-1))/(t_(m-0)-t_(m-1)),y), where t_(m-1)小於等於x小於t_(m-0) and 0小於等於y小於1; and 1*{ [t_2-t_1]+[t_4-t_3]+[t_6-t_5]...etc...+[t_(m-1)-t_(m-2)] }=1/2; and 1*{ [t_3-t_2]+[t_5-t_4]+[t_7-t_6]...etc...+[t_(m-0)-t_(m-1)] }=1/2. 第二種函數: if Z_X_(n+1)(x,y)=Z_Y_n((x-t_1)/(t_2-t_1),y), where t_1小於等於x小於t_2 and 0小於等於y小於1, then Z_X_(n+1)(x,y)=Z_Y_n((x-t_1)/(t_2-t_1),y), where t_1小於等於x小於t_2 and 0小於等於y小於1; and Z_X_(n+1)(x,y)=Z_Y_n((x-t_3)/(t_4-t_3),y), where t_3小於等於x小於t_4 and 0小於等於y小於1; and Z_X_(n+1)(x,y)=Z_Y_n((x-t_5)/(t_6-t_5),y), where t_5小於等於x小於t_6 and 0小於等於y小於1; ...etc... and Z_X_(n+1)(x,y)=Z_Y_n((x-t_(m-2))/(t_(m-1)-t_(m-2)),y), where t_(m-2)小於等於x小於t_(m-1) and 0小於等於y小於1; and Z_X_(n+1)(x,y)=Z_X_n((x-t_2)/(t_3-t_2),y), where t_2小於等於x小於t_3 and 0小於等於y小於1; and Z_X_(n+1)(x,y)=Z_X_n((x-t_4)/(t_5-t_4),y), where t_4小於等於x小於t_5 and 0小於等於y小於1; and Z_X_(n+1)(x,y)=Z_X_n((x-t_6)/(t_7-t_6),y), where t_6小於等於x小於t_7 and 0小於等於y小於1; ...etc... and Z_X_(n+1)(x,y)=Z_X_n((x-t_(m-1))/(t_(m-0)-t_(m-1)),y), where t_(m-1)小於等於x小於t_(m-0) and 0小於等於y小於1; and 1*{ [t_2-t_1]+[t_4-t_3]+[t_6-t_5]...etc...+[t_(m-1)-t_(m-2)] }=1/2; and 1*{ [t_3-t_2]+[t_5-t_4]+[t_7-t_6]...etc...+[t_(m-0)-t_(m-1)] }=1/2. (二). 若m是偶數正數, Z_X_(n+1)(x,y)只可以是下列二種函數中的某一種: 第一種函數: if Z_X_(n+1)(x,y)=Z_X_n((x-t_1)/(t_2-t_1),y), where t_1小於等於x小於t_2 and 0小於等於y小於1, then Z_X_(n+1)(x,y)=Z_X_n((x-t_1)/(t_2-t_1),y), where t_1小於等於x小於t_2 and 0小於等於y小於1; and Z_X_(n+1)(x,y)=Z_X_n((x-t_3)/(t_4-t_3),y), where t_3小於等於x小於t_4 and 0小於等於y小於1; and Z_X_(n+1)(x,y)=Z_X_n((x-t_5)/(t_6-t_5),y), where t_5小於等於x小於t_6 and 0小於等於y小於1; ...etc... and Z_X_(n+1)(x,y)=Z_X_n((x-t_(m-1))/(t_(m-0)-t_(m-1)),y), where t_(m-1)小於等於x小於t_(m-0) and 0小於等於y小於1; and Z_X_(n+1)(x,y)=Z_Y_n((x-t_2)/(t_3-t_2),y), where t_2小於等於x小於t_3 and 0小於等於y小於1; and Z_X_(n+1)(x,y)=Z_Y_n((x-t_4)/(t_5-t_4),y), where t_4小於等於x小於t_5 and 0小於等於y小於1; and Z_X_(n+1)(x,y)=Z_Y_n((x-t_6)/(t_7-t_6),y), where t_6小於等於x小於t_7 and 0小於等於y小於1; ...etc... and Z_X_(n+1)(x,y)=Z_Y_n((x-t_(m-2))/(t_(m-1)-t_(m-2)),y), where t_(m-2)小於等於x小於t_(m-1) and 0小於等於y小於1; and 1*{ [t_2-t_1]+[t_4-t_3]+[t_6-t_5]...etc...+[t_(m-0)-t_(m-1)] }=1/2; and 1*{ [t_3-t_2]+[t_5-t_4]+[t_7-t_6]...etc...+[t_(m-1)-t_(m-2)] }=1/2. 第二種函數: if Z_X_(n+1)(x,y)=Z_Y_n((x-t_1)/(t_2-t_1),y), where t_1小於等於x小於t_2 and 0小於等於y小於1, then Z_X_(n+1)(x,y)=Z_Y_n((x-t_1)/(t_2-t_1),y), where t_1小於等於x小於t_2 and 0小於等於y小於1; and Z_X_(n+1)(x,y)=Z_Y_n((x-t_3)/(t_4-t_3),y), where t_3小於等於x小於t_4 and 0小於等於y小於1; and Z_X_(n+1)(x,y)=Z_Y_n((x-t_5)/(t_6-t_5),y), where t_5小於等於x小於t_6 and 0小於等於y小於1; ...etc... and Z_X_(n+1)(x,y)=Z_Y_n((x-t_(m-1))/(t_(m-0)-t_(m-1)),y), where t_(m-1)小於等於x小於t_(m-0) and 0小於等於y小於1; and Z_X_(n+1)(x,y)=Z_X_n((x-t_2)/(t_3-t_2),y), where t_2小於等於x小於t_3 and 0小於等於y小於1; and Z_X_(n+1)(x,y)=Z_X_n((x-t_4)/(t_5-t_4),y), where t_4小於等於x小於t_5 and 0小於等於y小於1; and Z_X_(n+1)(x,y)=Z_X_n((x-t_6)/(t_7-t_6),y), where t_6小於等於x小於t_7 and 0小於等於y小於1; ...etc... and Z_X_(n+1)(x,y)=Z_X_n((x-t_(m-2))/(t_(m-1)-t_(m-2)),y), where t_(m-2)小於等於x小於t_(m-1) and 0小於等於y小於1; and 1*{ [t_2-t_1]+[t_4-t_3]+[t_6-t_5]...etc...+[t_(m-0)-t_(m-1)] }=1/2; and 1*{ [t_3-t_2]+[t_5-t_4]+[t_7-t_6]...etc...+[t_(m-1)-t_(m-2)] }=1/2. (乙). Y_(n+1)=[Y_n+X_n+] Z_Y_(n+1)(x,y)是Y_(n+1)之Z函數, 我要以Z_Y_n(x,y)和Z_X_n(x,y)來表示Z_Y_(n+1)(x,y), s_i是在Y axis之體積,i是其索引, s_i is real number and 0小於等於s_i小於等於1 for all i, where i is integer and 1小於等於i小於等於m, 3小於等於m, s_1=0,s_m=1, s_1小於s_2, s_2小於s_3, s_3小於s_4, ...etc... s_(m-1)小於s_m, (一). 若m是奇數正數, Z_Y_(n+1)(x,y)只可以是下列二種函數中的某一種: 第一種函數: if Z_Y_(n+1)(x,y)=Z_Y_n(x,(y-s_1)/(s_2-s_1)), where s_1小於等於y小於s_2 and 0小於等於x小於1, then Z_Y_(n+1)(x,y)=Z_Y_n(x,(y-s_1)/(s_2-s_1)), where s_1小於等於y小於s_2 and 0小於等於x小於1; and Z_Y_(n+1)(x,y)=Z_Y_n(x,(y-s_3)/(s_4-s_3)), where s_3小於等於y小於s_4 and 0小於等於x小於1; and Z_Y_(n+1)(x,y)=Z_Y_n(x,(y-s_5)/(s_6-s_5)), where s_5小於等於y小於s_6 and 0小於等於x小於1; ...etc... and Z_Y_(n+1)(x,y)=Z_Y_n(x,(y-s_(m-2))/(s_(m-1)-s_(m-2))), where s_(m-2)小於等於y小於s_(m-1) and 0小於等於x小於1; and Z_Y_(n+1)(x,y)=Z_X_n(x,(y-s_2)/(s_3-s_2)), where s_2小於等於y小於s_3 and 0小於等於x小於1; and Z_Y_(n+1)(x,y)=Z_X_n(x,(y-s_4)/(s_5-s_4)), where s_4小於等於y小於s_5 and 0小於等於x小於1; and Z_Y_(n+1)(x,y)=Z_X_n(x,(y-s_6)/(s_7-s_6)), where s_6小於等於y小於s_7 and 0小於等於x小於1; ...etc... and Z_Y_(n+1)(x,y)=Z_X_n(x,(y-s_(m-1))/(s_(m-0)-s_(m-1))), where s_(m-1)小於等於y小於s_(m-0) and 0小於等於x小於1; and 1*{ [s_2-s_1]+[s_4-s_3]+[s_6-s_5]...etc...+[s_(m-1)-s_(m-2)] }=1/2; and 1*{ [s_3-s_2]+[s_5-s_4]+[s_7-s_6]...etc...+[s_(m-0)-s_(m-1)] }=1/2. 第二種函數: if Z_Y_(n+1)(x,y)=Z_X_n(x,(y-s_1)/(s_2-s_1)), where s_1小於等於y小於s_2 and 0小於等於x小於1, then Z_Y_(n+1)(x,y)=Z_X_n(x,(y-s_1)/(s_2-s_1)), where s_1小於等於y小於s_2 and 0小於等於x小於1; and Z_Y_(n+1)(x,y)=Z_X_n(x,(y-s_3)/(s_4-s_3)), where s_3小於等於y小於s_4 and 0小於等於x小於1; and Z_Y_(n+1)(x,y)=Z_X_n(x,(y-s_5)/(s_6-s_5)), where s_5小於等於y小於s_6 and 0小於等於x小於1; ...etc... and Z_Y_(n+1)(x,y)=Z_X_n(x,(y-s_(m-2))/(s_(m-1)-s_(m-2))), where s_(m-2)小於等於y小於s_(m-1) and 0小於等於x小於1; and Z_Y_(n+1)(x,y)=Z_Y_n(x,(y-s_2)/(s_3-s_2)), where s_2小於等於y小於s_3 and 0小於等於x小於1; and Z_Y_(n+1)(x,y)=Z_Y_n(x,(y-s_4)/(s_5-s_4)), where s_4小於等於y小於s_5 and 0小於等於x小於1; and Z_Y_(n+1)(x,y)=Z_Y_n(x,(y-s_6)/(s_7-s_6)), where s_6小於等於y小於s_7 and 0小於等於x小於1; ...etc... and Z_Y_(n+1)(x,y)=Z_Y_n(x,(y-s_(m-1))/(s_(m-0)-s_(m-1))), where s_(m-1)小於等於y小於s_(m-0) and 0小於等於x小於1; and 1*{ [s_2-s_1]+[s_4-s_3]+[s_6-s_5]...etc...+[s_(m-1)-s_(m-2)] }=1/2; and 1*{ [s_3-s_2]+[s_5-s_4]+[s_7-s_6]...etc...+[s_(m-0)-s_(m-1)] }=1/2. (二). 若m是偶數正數, Z_Y_(n+1)(x,y)只可以是下列二種函數中的某一種: 第一種函數: if Z_Y_(n+1)(x,y)=Z_Y_n(x,(y-s_1)/(s_2-s_1)), where s_1小於等於y小於s_2 and 0小於等於x小於1, then Z_Y_(n+1)(x,y)=Z_Y_n(x,(y-s_1)/(s_2-s_1)), where s_1小於等於y小於s_2 and 0小於等於x小於1; and Z_Y_(n+1)(x,y)=Z_Y_n(x,(y-s_3)/(s_4-s_3)), where s_3小於等於y小於s_4 and 0小於等於x小於1; and Z_Y_(n+1)(x,y)=Z_Y_n(x,(y-s_5)/(s_6-s_5)), where s_5小於等於y小於s_6 and 0小於等於x小於1; ...etc... and Z_Y_(n+1)(x,y)=Z_Y_n(x,(y-s_(m-1))/(s_(m-0)-s_(m-1))), where s_(m-1)小於等於y小於s_(m-0) and 0小於等於x小於1; and Z_Y_(n+1)(x,y)=Z_X_n(x,(y-s_2)/(s_3-s_2)), where s_2小於等於y小於s_3 and 0小於等於x小於1; and Z_Y_(n+1)(x,y)=Z_X_n(x,(y-s_4)/(s_5-s_4)), where s_4小於等於y小於s_5 and 0小於等於x小於1; and Z_Y_(n+1)(x,y)=Z_X_n(x,(y-s_6)/(s_7-s_6)), where s_6小於等於y小於s_7 and 0小於等於x小於1; ...etc... and Z_Y_(n+1)(x,y)=Z_X_n(x,(y-s_(m-2))/(s_(m-1)-s_(m-2))), where s_(m-2)小於等於y小於s_(m-1) and 0小於等於x小於1; and 1*{ [s_2-s_1]+[s_4-s_3]+[s_6-s_5]...etc...+[s_(m-0)-s_(m-1)] }=1/2; and 1*{ [s_3-s_2]+[s_5-s_4]+[s_7-s_6]...etc...+[s_(m-1)-s_(m-2)] }=1/2. 第二種函數: if Z_Y_(n+1)(x,y)=Z_X_n(x,(y-s_1)/(s_2-s_1)), where s_1小於等於y小於s_2 and 0小於等於x小於1, then Z_Y_(n+1)(x,y)=Z_X_n(x,(y-s_1)/(s_2-s_1)), where s_1小於等於y小於s_2 and 0小於等於x小於1; and Z_Y_(n+1)(x,y)=Z_X_n(x,(y-s_3)/(s_4-s_3)), where s_3小於等於y小於s_4 and 0小於等於x小於1; and Z_Y_(n+1)(x,y)=Z_X_n(x,(y-s_5)/(s_6-s_5)), where s_5小於等於y小於s_6 and 0小於等於x小於1; ...etc... and Z_Y_(n+1)(x,y)=Z_X_n(x,(y-s_(m-1))/(s_(m-0)-s_(m-1))), where s_(m-1)小於等於y小於s_(m-0) and 0小於等於x小於1; and Z_Y_(n+1)(x,y)=Z_Y_n(x,(y-s_2)/(s_3-s_2)), where s_2小於等於y小於s_3 and 0小於等於x小於1; and Z_Y_(n+1)(x,y)=Z_Y_n(x,(y-s_4)/(s_5-s_4)), where s_4小於等於y小於s_5 and 0小於等於x小於1; and Z_Y_(n+1)(x,y)=Z_Y_n(x,(y-s_6)/(s_7-s_6)), where s_6小於等於y小於s_7 and 0小於等於x小於1; ...etc... and Z_Y_(n+1)(x,y)=Z_Y_n(x,(y-s_(m-2))/(s_(m-1)-s_(m-2))), where s_(m-2)小於等於y小於s_(m-1) and 0小於等於x小於1; and 1*{ [s_2-s_1]+[s_4-s_3]+[s_6-s_5]...etc...+[s_(m-0)-s_(m-1)] }=1/2; and 1*{ [s_3-s_2]+[s_5-s_4]+[s_7-s_6]...etc...+[s_(m-1)-s_(m-2)] }=1/2. -- 中文版.html: http://mavang2.tripod.com/square/index.html 中文版.txt: http://mavang2.tripod.com/square/index.txt 英文版.html: http://mavang2.tripod.com/square/index_english.html 英文版.txt: http://mavang2.tripod.com/square/index_english.txt 高果位的生活方式 http://mavang2.tripod.com/square/higher-ranking.txt 參考經文: http://mavang2.tripod.com/square/binary.txt 參考醫學 http://mavang2.tripod.com/square/binary-medicine-2.txt 阿達爾瑪佛教網路 http://mavang2.tripod.com/ 真佛資訊網路 http://www.tbsn.org/ -- 好康訊息! Openfind 提供免費撥接電話:40508888 帳號:openfind 密碼:openfind -- http://bbs.openfind.com.tw ※來源:140.117.*
ANUBISANKH:?? 推 140.112.7.59 03/24