精華區beta Statistics 關於我們 聯絡資訊
let { Xn , n = 1, 2, ..... } be a set of iid Exp(λ) random variables, and let N be an independent G(p) random variable. Show that Z = X_1 + X_2 + ... + X_N is an Exp(λp) random variable. 拜託各位大大了 -- wanna see your face with a very big smile everyday...*^___________^* -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.57.74.100 > -------------------------------------------------------------------------- < 作者: mangogogo (ka) 看板: Statistics 標題: Re: [問題] 證明分配 時間: Wed Oct 19 17:01:34 2005 ※ 引述《hata506 (真夏的聖誕節)》之銘言: : let { Xn , n = 1, 2, ..... } be a set of iid Exp(λ) random variables, : and let N be an independent G(p) random variable. : Show that Z = X_1 + X_2 + ... + X_N : is an Exp(λp) random variable. : 拜託各位大大了 Z=ΣX_i|N~Γ(N,λ) N~G(p) λ ∞ λ M(t)=E[exp{-Zt}]=EE[exp{-Zt}|N]=E[(------)^N]=Σ(------)^n*(p(1-p)^n-1) λ-t n=1 λ-t p λ(1-p) p v =----Σ[------]^n=-----*------ λ(1-p) 1-p λ-t 1-p 1-v (令v=-------) λ-t λp =-------- λp-t 由動差生成函數的唯一性 可以知道Z~Exp(λp) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.143.120.60
hata506:太厲害了 謝謝指點 ^^ 10/19 21:33