精華區beta Statistics 關於我們 聯絡資訊
※ [本文轉錄自 Examination 看板] 作者: hua12 (hua) 看板: Examination 標題: [課業] 94特考/生物統計學 時間: Wed Mar 4 10:38:09 2009 1.考試類別:94年 特考 2.科目:生物統計學 3.目前參考用書與章節:三元 4.想問的內容: 二、一個骰子被擲600次,結果號碼1出現110次、號碼2出現95次、號碼3出現107 次、號碼4出現92次、號碼5出現104次、號碼6出現92次。 檢定此一骰子是公正不偏?(設α=0.05) (χ2 =12.592 ; χ2 =11.070) α=0.05, df=6 α=0.05, df=5 5.想法: 這題採用適合度檢定解題,但一般認為6個觀察值df應該是5,題目也是給6和5兩種 但是三元楊老師說這題有錯,df=4才對(k-1-1)因有使用觀察值的平均值,用掉了 一個parameter,所以df要再減1。 那如果題目要我們檢定是否號碼1出現100次、號碼2出現100次、號碼3出現100次....., 這時df是不是就等於5? 當年對這題有爭議嗎? 寫考古題時覺得考卷給的臨界值常常查不到適合的,這時該怎麼處理比較好? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.109.54.2
xiang1105:如果6個號碼各出現一百次那也不太需要檢定吧 03/04 13:21
moon0419:假設母體分配已知 p1=p2=...=p6=1/6 03/04 18:37
hua12:轉錄至看板 Math 03/17 18:11 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.109.54.2 > -------------------------------------------------------------------------- < 作者: jangwei (呆呆) 看板: Statistics 標題: Re: [問題] 94特考/生物統計學 時間: Tue Mar 17 20:59:29 2009 ※ 引述《hua12 (hua)》之銘言: : ※ [本文轉錄自 Examination 看板] : 作者: hua12 (hua) 看板: Examination : 標題: [課業] 94特考/生物統計學 : 時間: Wed Mar 4 10:38:09 2009 : 1.考試類別:94年 特考 : 2.科目:生物統計學 : 3.目前參考用書與章節:三元 : 4.想問的內容: : 二、一個骰子被擲600次,結果號碼1出現110次、號碼2出現95次、號碼3出現107 : 次、號碼4出現92次、號碼5出現104次、號碼6出現92次。 : 檢定此一骰子是公正不偏?(設α=0.05) : (χ2 =12.592 ; χ2 =11.070) : α=0.05, df=6 α=0.05, df=5 : 5.想法: : 這題採用適合度檢定解題,但一般認為6個觀察值df應該是5,題目也是給6和5兩種 : 但是三元楊老師說這題有錯,df=4才對(k-1-1)因有使用觀察值的平均值,用掉了 : 一個parameter,所以df要再減1。 你們老師的觀念有問題, 這個分配參數已知不需估計, 何需再減1? : 那如果題目要我們檢定是否號碼1出現100次、號碼2出現100次、號碼3出現100次....., : 這時df是不是就等於5? : 當年對這題有爭議嗎? : 寫考古題時覺得考卷給的臨界值常常查不到適合的,這時該怎麼處理比較好? 若查不到可用線性內插法來找近似值 ============================================================================== H0: 此骰子的點數出現服從離散分配 DU{1,2,3,4,5,6} H1: 此骰子的點數出現不服從離散分配 DU{1,2,3,4,5,6} 2 2 2 C={χ | χ > χ (0.05;5) = 11.07 } i 1 2 3 4 5 6 sum o(i) 110 95 107 92 104 92 600 e(i) 100 100 100 100 100 100 600 o(i)-e(i) 10 -5 7 -8 4 -8 0 (o(i)-e(i))^2 1 0.25 0.49 0.64 0.16 0.64 3.18 --------- e(i) 2 6 [o(i)-e(i)]^2 χ = Σ -------------- = 3.18 不在拒絕域 i=1 e(i) 故無法拒絕H0 -- 歡迎到Ptt統計學板一起討論研究統計方面的問題! telnet://ptt.cc \(^▽^)/ (C)lass 【 分組討論區 】 國家研究院 Academy 研究 Σ科學學術研究院 Science 理學 Σ 理學研究院 Statistics -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.204.108.112 ※ 編輯: jangwei 來自: 123.204.108.112 (03/19 13:30)
jangwei:修正離散均勻分配參數的部份... 03/19 13:30
> -------------------------------------------------------------------------- < 作者: bmka (偶素米蟲) 站內: Statistics 標題: Re: [問題] 94特考/生物統計學 時間: Fri Mar 20 12:18:34 2009 ※ 引述《gsuper (綠色蘇打心)》之銘言: : 一顆骰子的機率分布(uniform dis *6個事件的pdf皆相等*)屬於古典機率 discrete uniform distribution 跟 uniform distribution 不一樣喔 : 如果骰子超過一顆 也仍屬古典機率 但不為uniform dis : 古典機率擁有以下特徵 : "母體平均數和標準差 : 可以直接用常識計算出來 : 不需經過長久的取樣和估計而得知" 前兩句話跟第三句話有什麼關係? 再者, 如果不確定骰子是不是fair 怎麼能不經過"取樣"去"估計" population mean and standard deviation : 所以 df=6-1=5 即可 上一段的敘述, 跟這句對d.f.的說明完全扯不上關係 : 反觀需要多減1個自由度的狀況 : 稱之為 Intrinsic model 這是什麼? : 注意! 這種修正只適用於 r*k 的 category data : 也就是特指適用於此題目的統計方法 (r*k chi square--合適度檢定) d.f. of the chi-square test 是由null hypothesis (H0) 及alternative hypothesis (H1) 決定 (在做goodnes-of-fit test 時, alternative hypothesis就是saturated model.) d.f.則是H1跟H0下的parameter space 維度的差 以原來討論的題目為例 在H1(saturated model)之下,骰子每一面出現的機率要滿足 p1 + p2 + ... + p6 = 1 所以自由參數的數目有五個 在 H0 之下, p1 = p2 = ... = p6 = 1/6 自由參數的數目有0個 所以chi-square test 的 d.f. 為 5-0 = 5 試問,如果想檢驗 H0: p1=2*p2, likelihood ratio test 的 d.f.應該是多少? 再用同樣的想法去推 r*k table 的 chi-square test 應該就清楚了 H0: probability distributions are the same in k groups. 自由參數有 r-1 個 H1: saturated model 自由參數有 (r-1)*k (每個group的probability distn 可能不同) chi-square test 的 d.f. 為 (r-1)*k - (r-1 ) = (r-1)*(k-1) 當然你也可以找到其它計算d.f.的解釋方法 eg. the number of cells minus the reduction in degrees of freedom (r * k) - (r + k - 1) 都可以參考 : 最簡單的觀察 : 可以從計算pdf的公式來看 : Poisson的公式中 : 有一個母數 u 的估計值 : u 是經過長久的取樣 : 而得到能被信任的 "母數" 很明顯的你搞不清楚 population parameter 跟 estimator 的不同 : 也就是從 estimator (X bar) 進化成 parameter (u) "進化"?? 你可以說它converge in probability or almost surely to the true parameter. 但是random variable 就是 random variable. : 因此多了一個被估計的parameter : (你無法算出一年平均會有幾個颱風 : 只能用實測的方式取得 X bar : 然後很多的 X bar 再進化成 u) : 因此有這個估計的u : 自由度再縮減一個 : df=6-1-1=4 : 若是 Normal dis : 被估計的母數有兩個 : "u" , "標準差" : 所以 df=6-1-2 = 3 : : 一般的Normal dis 或是 Poisson dis : df仍然只有減一 : 這裡的減2減3只是針對此種統計方法的修正 : 並不具有普遍性.... 上面 d.f.的算法完全不知所云...跳過不看 如果對Normal 或 Poisson或是其它 probability model 的檢定有興趣 請查 likelihood ratio test : : 請B大手下留情 Relax, I don't bite. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ※ 編輯: bmka 來自: 71.126.187.93 (03/20 12:33)
gsuper:不好意思 本來要打 K samples 的 intrinsic model 03/20 15:15
gsuper:不小心寫成 r*k samples.... 已修正 03/20 15:15
gsuper:我的重點在於 原po起先不曉得這種統計方法的df如何修正 03/20 21:15
gsuper:我就跟他說可從PDF的公式來判斷 並非意指全部的df都這樣搞 03/20 21:16
gsuper:所以這篇文章屬於條件機率的 不對全部的df有普遍性 03/20 21:17
gsuper:而我說的 estimator的進化就只是透過 sampling dis 03/20 21:45
gsuper:再搭配CLT收束的結果 題這個只是和前面的古典機率做比對 03/20 21:46
gsuper:目的是突顯出 intrinsic model該針對什麼情況而使用 03/20 21:48
bmka:Do you know what you are talking about?你提到"古典機率", 03/21 00:40
bmka:"intrinsic model"你真的了解這指的是什麼嗎? 03/21 00:41
bmka:"修正" d.f.?沒聽過這種說法..."條件機率"!?哪來的條件機率? 03/21 00:42
bmka:而且d.f.不是只看pdf, 重要的是搞清楚H0 & H1 03/21 00:52