精華區beta TransPhys 關於我們 聯絡資訊
※ 引述《kinki1843 (onizuka)》之銘言: : ※ 引述《sdsa (加油)》之銘言: : : (a)Is there a continuous function f from [0,1] onto (0,1)?Why? : : (b)Is there a one-to-one function g from [0,1] onto (0,1)?Why? : : 謝謝指教了 : : 或許這題對有些人來說很簡單 : : 但是我的高微程度真的很差 : : 可以耐心幫我講解嗎 : : 我觀念不是很清楚 : : 都沒有人可以問 嗚嗚 : (a)no!(0,1)不為compactㄉ,連續函數保有compact : (b)是吧,應該是自己第ㄉ含數為onto就可以了 : over! (a) Theorem 9.29 (William Wade third edition) if H is compact in R^n and f: from H to R^m is conti then F(H) is compact in R^n since [0,1] is compact , if f is conti from [0,1] to (0,1) ,then (0,1) must be compact. There is a contradiction. (b) f(x)= 1/2 when x=0 1/n+2 when 1/x belongs to N ( eg, f(1/1)= 1/3 f(1/2)=1/4 ) x otherwise then f: [0,1] to (0,1) is a 1-1 function 據說是數導題目? -- http://www.wretch.cc/album/savory -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 210.85.38.109