精華區beta TransPhys 關於我們 聯絡資訊
※ 引述《plover (>//////<)》之銘言: : Suppose that f has derivative which is monotonic decreasing with : f'(x) ≧ m > 0 on [a,b]. Show that : b : ∣∫ cosf(x) dx ∣ ≦2/m. : a Since f has derivative ∫ cosf(x) dx [ cos f(x) ] * [ f'(x) ] = ∫ ------------------------- dx [ f'(x) ] f is monotonic decreasing , so m ≧ 1/f`(b) 1/f` is increasing and cos u is continous , by 2nd M.V.T for Riemann integrals 1 f(b) ----- ∫ [ cos u ] du m f(c) 1 ----- [ sin f(b) - sin f(c) ] m Hence, ∣∫ cosf(x) dx ∣ 1 ≦ ----- [ | sin f(b)| + | sin f(c) |] ≦ 2/m m Note: 其實有一個小地方沒說清楚 ... XD -- With great power comes great responsibility . -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 202.178.171.161