精華區beta TransPhys 關於我們 聯絡資訊
※ 引述《plover (>//////<)》之銘言: : ※ 引述《plover (>//////<)》之銘言: : : Let f be a positive continuous function defined on [a,b]. And let M be the : : maximum of f. Show that : : b : : ( ∫ f(x)^n dx )^1/n -> M, as n goes infinity. : : a : Hint: 在 f 達到最大值那一點使用連續性. ∵f is conti. on [a ,b] exist t. in [a,b] such that f(t.)=M any ε>0 exist δ>0 such that x in (t.-δ,t.+δ) => M-ε<f(X)<M+ε t.+δ b n b => ∫ f(t)^n dt < ∫ f(t)^n dt < M ∫dt t.-δ a = a n b n => (2δ) (M-ε) < ∫ f(t)^n dt < M (b-a) a = 1/n b 1/n 1/n => (2δ) (M-ε) < [ ∫ f(t)^n dt ] < M (b-a) a = ∵εis arbitrary 1/n b 1/n 1/n => (2δ) M < [ ∫ f(t)^n dt ] < M (b-a) a = b 1/n ==> lim [ ∫ f(t)^n dt ] = M n->∞ a -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.184.18.190 ※ 編輯: icged 來自: 218.184.18.190 (01/20 17:47)