精華區beta Transfer 關於我們 聯絡資訊
※ 引述《dorminia (重新出發)》之銘言: : ※ 引述《chrisjon (研究布丁狗)》之銘言: : : Let f(x)=e^(-1/x^2) , x != 0 and f(0) = 0 : : Prove that f is twice differentiable at 0 : : 我的算法是f''(x),然後再求lim x→0 : : 但是用羅必達法則微半天 : : 就是消不完~.~ : : 請各位先進幫忙一下,謝謝 f(x) - f(0) e^(-1/x^2) 1/x f'(0) = lim ------------- = lim ------------- = lim ------------ (∞/∞型) x→0 x - 0 x→0 x x→0 e^(1/x^2) -1/x^2 x = lim ------------------- = lim -------------- (0/∞) = 0 存在 x→0 (-2/x^3)*e^(1/x^2) x→0 2 e^(1/x^2) f'(x) - f'(0) (2/x^3)*e^(-1/x^2) f''(0) = lim --------------- = lim -------------------- x→0 x - 0 x→0 x 2/x^4 = lim --------------- (∞/∞型) x→0 e^(1/x^2) -8/x^5 4/x^2 = lim ------------------- = lim ------------ (∞/∞型) x→0 (-2/x^3)*e^(1/x^2) x→0 e^(1/x^2) -8/x^3 4 = lim ------------------- = lim ------------- = 0 存在 x→0 (-2/x^3)*e^(1/x^2) x→0 e^(1/x^2) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.62.121.187 ※ 編輯: axis0801 來自: 61.62.121.187 (01/17 00:16)
chrisjon:喔喔喔!!看起來還真簡單orz 謝謝 01/17 00:55