精華區beta Transfer 關於我們 聯絡資訊
※ 引述《jbsh (鄉民)》之銘言: : Let F(x1,x2)be a real-valued function defined on R^2 with partial derivatives : Fi=dF/dxi for i=1,2 .Suppose that variable v is implicitly defined as a : function of u by the equation F(u-v,u+v)=0 .find dv/du in terms if F1 and : F2 依題意: F為x1,x2之函數且 x1=u-v, x2=u+v, v是u的隱函數 故F最終為u的函數! 圖解示意.. F / \ x1 x2 / \ / \ u v u v | | u u 以下 "@" 表偏微,原po題目打錯,應為 Fi=@F/@xi for i=1,2 x1=u-v, x2=u+v F(u-v,u+v)=0 => dF/du =0 dF/du = (@F/@x1)(@x1/@u) + (@F/@x1)(@x1/@v)(dv/du) + (@F/@x2)(@x2/@u) + (@F/@x2)(@x2/@v)(dv/du) = F1*1 + F1*(-1)*(dv/du) + F2*1 + F2*1*(dv/du) = (F1+F2) + (dv/du)*(F2-F1) = 0 <=> dv/du = (F1+F2)/(F1-F2)