精華區beta ck61st323 關於我們 聯絡資訊
※ 引述《chienluen (小捻)》之銘言: 想問問下面兩題證明題~ Q2 Show that, if y"=-y, y'=1, and y=0 when x=0, then y=sinx. pf: 今將證明改為若 y"(x) + β^2*y(x) = 0 , 求其解。 y(x) 令 z(x) = -------- , 即 y(x) = z(x)*cosβx cosβx 則 y'(x) = z'(x)*cosβx - β*z(x)*sinβx → y"(x) = z"(x)*cosβx - 2β*z'(x)*sinβx - β^2*z(x)*cosβx = z"(x)*cosβx - 2β*z'(x)*sinβx - β^2*y(x) → 0 = y"(x) + β^2*y(x) = z"(x)*cosβx - 2β*z'(x)*sinβx → z"(x)*cos^2βx - 2β*z'(x)*sinβx*cosβx = 0 → [ z'(x)*cos^2βx ]' = 0 → z'(x)*cos^2βx = C2*β (C2為常數) → z'(x) = C2*β*sec^2βx y(t) → z(x) = C1 + C2*tanβx = -------- (C1,C2為常數) cosβx 所以 y(t) = C1*cosβx + C2*sinβx (C1,C2為常數) 今將題目代入此公式解: y"(t) + y(t) = 0 ( β=1 ) y(t) = C1*cosx + C2*sinx (C1,C2為常數) 又 y(0) = 0 → C1 = 0 y'(0) = 1 → C2 = 0 所以 y(t) = sinx ,由此得證 -- -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.194.254.199