精華區beta graduate 關於我們 聯絡資訊
1) Derive the general solution for the following model of differential equation. Z = 1/6 - 3X + Y dX/dt = -1/2(m-Z) dY/dt = 3/4(Z-Y) where m is an exogeneous variable. (這題是指對Z微t等於多少嗎? or??? orz) 2) Consider the CES production function, Q = A[bK^(-p) + (1-b)L^(-p)]^(-1/p) , where A > 0 , 0 < b < 1 -1 < p 且不等於0. Given constant input prices r and w, show that the locus of points (K*,L*) that minimize the cost, C = rK +wL at various levels of Q (i.e.,expansion path) is a straight line emanating from the point of origin in the (K,L) space. (題目是指對其用lagrange 得的答案後會過原點嗎??? or? ) 3) Find the general solution for the difference equation Y + 1/4 Y =5 t+2 t (是用叉分方程嗎??) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.220.200.87
guteres:第一題第三式移一下代入第一式再對t微分再把第二 59.104.42.184 03/22
guteres:個式子代入再微分一次再把Z代換掉 59.104.42.184 03/22
guteres:這是我的作法 59.104.42.184 03/22
guteres:最後Y會先解出跟著解出Z再解出X 59.104.42.184 03/22
guteres:PS:Y應該是一個三階的微分方程 59.104.42.184 03/22
LCANYA:第三題有給初始條件嗎? 218.171.68.226 03/22
readjogood:第三題沒初始條件 題目就這樣了... 61.220.200.87 03/23
readjogood:謝謝樓上的諸位高手喔 ^^ 61.220.200.87 03/23