精華區beta riddle 關於我們 聯絡資訊
※ 引述《sshhyy (不要說我俗)》之銘言: : ※ 引述《lambert (呵哈哈哈)》之銘言: : : 有十三個球 : : 其中十二個一樣重 : : 另外一個較輕 : : 有個天平 : : 要怎樣在秤三次就找出較輕的那個? : 三個三個一堆..... : 先抓兩堆秤... : 若有一堆較輕...... : 把那一堆拿起...... : 秤其中兩個...... : 輕者即為所求..... : 若兩者同重.... : 剩下一個即為所求..... : 若兩堆同重...... : 則測另外兩堆..... : 步驟相同..... : 若另外兩堆也同仲.... : 不要懷疑..... : 就是十二個以外剩下的那一個..... : 算算看.... : 不管那一種可能..... : 最多只量三次ㄛ..... 如果把題目改成不知道那顆有問題的是較輕還是較重呢 13個改能12個 還是量三次 -- 今天 我讓一個陌生人快樂了一天 因為 我掉了100元 -- ※ 發信站: 批踢踢實業坊(ptt.twbbs.org) ◆ From: dialup66.sinica > -------------------------------------------------------------------------- < 作者: Leech (snobbish) 看板: riddle 標題: Re: 不知道算不算謎語… 時間: Mon Sep 6 00:35:39 1999 ※ 引述《claus (快叫我去讀書)》之銘言: : ※ 引述《sshhyy (不要說我俗)》之銘言: : 如果把題目改成不知道那顆有問題的是較輕還是較重呢 並不知道這樣對原本的解法有何影響? 不管輕重,只要不一樣重不就可以用同樣的方法嗎?? : 13個改能12個 : 還是量三次 -- 南畝耕,東山臥,世態人情經歷多。 閒將往事思量過,賢的是他,愚的是我,爭什麼 ~關漢卿,四塊玉 -- ※ 發信站: 批踢踢實業坊(ptt.twbbs.org) ◆ From: t194-228.dialup > -------------------------------------------------------------------------- < 作者: claus (快叫我去讀書) 看板: riddle 標題: Re: 不知道算不算謎語… 時間: Mon Sep 6 22:22:04 1999 ※ 引述《Leech (snobbish)》之銘言: : ※ 引述《claus (快叫我去讀書)》之銘言: : : 如果把題目改成不知道那顆有問題的是較輕還是較重呢 : 並不知道這樣對原本的解法有何影響? : 不管輕重,只要不一樣重不就可以用同樣的方法嗎?? : : 13個改能12個 : : 還是量三次 如果妳不知道有問題的事比較輕或者是比較重 那如果有一邊傾斜 妳怎麼判斷是那邊的有問題呢? -- 今天 我讓一個陌生人快樂了一天 因為 我掉了100元 -- ※ 發信站: 批踢踢實業坊(ptt.twbbs.org) ◆ From: dialup61.sinica > -------------------------------------------------------------------------- < 作者: Leech (fingers crossed) 看板: riddle 標題: Re: 不知道算不算謎語… 時間: Wed Sep 29 00:51:01 1999 ※ 引述《claus (快叫我去讀書)》之銘言: : ※ 引述《Leech (snobbish)》之銘言: : : 並不知道這樣對原本的解法有何影響? : : 不管輕重,只要不一樣重不就可以用同樣的方法嗎?? : 如果妳不知道有問題的事比較輕或者是比較重 : 那如果有一邊傾斜 : 妳怎麼判斷是那邊的有問題呢? hmm...... 過了這麼久 版主公佈答案吧 -- 南畝耕,東山臥,世態人情經歷多。 閒將往事思量過,賢的是他,愚的是我,爭什麼 ~關漢卿,四塊玉 -- ※ 發信站: 批踢踢實業坊(ptt.twbbs.org) ◆ From: t194-166.dialup > -------------------------------------------------------------------------- < 作者: claus (一根指頭形容一切) 看板: riddle 標題: Re: 不知道算不算謎語… 時間: Wed Sep 29 16:01:29 1999 ※ 引述《Leech (fingers crossed)》之銘言: : ※ 引述《claus (快叫我去讀書)》之銘言: : : 如果妳不知道有問題的事比較輕或者是比較重 : : 那如果有一邊傾斜 : : 妳怎麼判斷是那邊的有問題呢? : hmm...... : 過了這麼久 : 版主公佈答案吧 首先呢...先把12個球分成三組 任挑兩組量 如果一樣的話...剩下來的一定就會作了 如果有一邊較重呢.. 先假設第一組是1,2,3,4 第二組是5,6,7,8 並且假設第一組較重 在從第一組拿出1,2和第二組的5為第三組 第一組的3,4和第二組的6為第四組 第三組和第四組在量一次 假設第三組較重 便可得知 1,2其中有一個較重或者6比較輕 不同情形運用上述道理便可得知那個有問題了 -- 今天 我讓一個陌生人快樂了一天 因為 我掉了100元 -- ※ 發信站: 批踢踢實業坊(ptt.twbbs.org) ◆ From: dialup16.sinica > -------------------------------------------------------------------------- < 作者: farh (幸運星) 看板: riddle 標題: Re: 不知道算不算謎語… 時間: Wed Sep 29 16:19:19 1999 ※ 引述《claus (快叫我去讀書)》之銘言: : ※ 引述《sshhyy (不要說我俗)》之銘言: : : 三個三個一堆..... : : 先抓兩堆秤... : : 若有一堆較輕...... : : 把那一堆拿起...... : : 秤其中兩個...... : : 輕者即為所求..... : : 若兩者同重.... : : 剩下一個即為所求..... : : 若兩堆同重...... : : 則測另外兩堆..... : : 步驟相同..... : : 若另外兩堆也同仲.... : : 不要懷疑..... : : 就是十二個以外剩下的那一個..... : : 算算看.... : : 不管那一種可能..... : : 最多只量三次ㄛ..... : 如果把題目改成不知道那顆有問題的是較輕還是較重呢 : 13個改能12個 : 還是量三次 先編號1..2..3............12 1,2,3,一堆. 4,5,6,一堆 餘類推 先秤1,2,3,和4,5,6, 不論是否平衡,都先刪除一半了...all right? ----- then 假設是1,2,3,和4,5,6,有問題 再秤1,5,8, 和4,7,3, 也就是留下1,4,在原位 5,3 換位 2,6,下架"休息" ----- 有三種情形 一. 平衡了 很明顯是2,6,在搞怪 二. 換邊傾斜 很簡單可看出是5,3有問題 三 和第一次一樣 懂了吧.是1,4,不一樣 ----- 知道是哪兩個的問題 就粉easy了 if 1,4, 就把1拿來和任一已知正常的一起秤 if 傾斜 就是1 反之就是4 ----- 大略如上 ----- 我想....應該是這樣吧?! 版主公布一下吧 -- ※ 發信站: 批踢踢實業坊(ptt.twbbs.org) ◆ From: 140.112.7.157 > -------------------------------------------------------------------------- < 作者: denniswu (風中殘築......) 看板: riddle 標題: Re: 不知道算不算謎語… 時間: Wed Sep 29 16:25:04 1999 ※ 引述《farh (幸運星)》之銘言: : ※ 引述《claus (快叫我去讀書)》之銘言: : : 如果把題目改成不知道那顆有問題的是較輕還是較重呢 : : 13個改能12個 : : 還是量三次 我在別站看到的 現在我們以1~12代替錢幣.... 1,2,3,4, 5,6,7,8, 9,10,11,12, 首先拿前兩堆來比較....則會有 一`1,2,3,4,>5,6,7,8,(第一次) 此時便確定9~12為真錢..... 這時再把9加入,分成1,2,9, 3,4,5, 6,7,8, 三堆... 把前兩堆拿來比較... (1)若是1,2,9,>3,4,5,(第二次)若假錢較重,則在1,2中..若是假錢較輕則在5 所以此時只要比較1,2,若1>2則假錢為1,反之則為2,若1=2,則假錢為5.(第三次) (2)1,2,9,<3,4,5,方法類似 我們以經知道9是真錢....又1,2,3,4,>5,6,7,8,...... 所以.若是假錢較輕則一定是在5,6,7,8,之中......剩餘ㄉ都是真錢 所以.....在這情況下假錢一定較重............是嗎???????? 這樣此時只要比較3,4若3>4則假錢為3,反之則為4....... (3)1,2,9,=3,4,5,則假錢在6,7,8,中,且此時假錢較真錢為輕........ (因為1,2,3,4,>5,6,7,8,所以若假錢在6,7,8,中,則假錢較輕..) 所以只要知到6,7,8,中那個校輕即可... 二`1,2,3,4,<5,6,7,8,情況仿一` 三`1,2,3,4,=5,6,7,8,...則假錢在9,10,11,12,中.... 拿1,9,跟10,11,比較, (1)若1,9,>10,11(第二次),則拿10跟11比較(第三次),若10>11則11為假錢, 反之則10為假錢(因為1,9,>10,11,)若10=11則9為假錢且假錢較重... (2)1,9<10,11,仿上.. (3)1,9,=10,11,,則12為假錢........ == 大概是這樣 大家參考一下 -- ╭┐ ╭╮ ╭─┘∣╭──╮┌┐─╮┌┐─╮├┤╭──╮┌┬┬╮╭┬─┐ ││ ∣│ │∣∣ ∣∣ ∣│││ꌠ─╮∣││∣││ │ │ ∣│ ─╯∣ │∣∣ │∣││╰─ ∣∣ ∣│ │. ╰──╯╰──╯└┴┴╯└┴┴╯╰┘╰──╯╰──╯╰─╰┘ ..* -- ※ 發信站: 批踢踢實業坊(ptt.twbbs.org) ◆ From: 159.c247.ethome > -------------------------------------------------------------------------- < 作者: jasonlin (胸懷千萬里掌握三百天) 看板: riddle 標題: Re: 不知道算不算謎語… 時間: Wed Sep 29 19:56:10 1999 ※ 引述《Leech (fingers crossed)》之銘言: : ※ 引述《claus (快叫我去讀書)》之銘言: : : 如果妳不知道有問題的事比較輕或者是比較重 : : 那如果有一邊傾斜 : : 妳怎麼判斷是那邊的有問題呢? : hmm...... : 過了這麼久 : 版主公佈答案吧 這是我以前在別的地方po過的 abcdefghijkl共十二個東西 abcd efgh ──┬── △ ┌─────┴──────────┬──────┐ / ─ \ △ △ △ : : ꄠ: abe cdf abc ijk (略) ──┬── ──┬── △ △ ┌───┼───┐ ┌───┼───┐ / ─ \ / ─ \   ꄠ △ △ △ △ △ △ : : : : : : ab gh cd ij al ij ┬ ┬ ┬ ┬ ┬ ┬ △ △ △ △ △ △ ┌┼┐ ┌┴┐ ┌┼┐ ┌┼┐ ┌┴┐ ┌┼┐ / - \ / \ / - \ / - \ / \ / - \ a f b h g c e d j k i l l i k j 重輕重 輕 輕 重輕重 輕輕輕 輕 重 重重重 -- ※ 發信站: 批踢踢實業坊(ptt.twbbs.org) ◆ From: h100.s34.ts30.h