推 imeajean:已回至信箱 08/12 10:55
推 imlkw:樓上的大哥可以順便跟我講怎麼算嗎? 3q 08/12 11:47
> -------------------------------------------------------------------------- <
作者: yuchwen (皮皮) 看板: teaching
標題: Re: [請益] 請教一題高中數學
時間: Sun Aug 12 02:25:54 2007
※ 引述《LaPo (.....)》之銘言:
: 求一個實數x使f(x)=(2x^2-6x+5)^1/2+(2x^2-14x+29)^1/2的值為最小,並求該最小值。
用配方法: f(x)=(x^2-3x+9/4)+1/4+(x^2-7x+49/4)+9/4
=(x-3/2)^2 + (x-7/2)^2 + 5/2
因要求 f(x) 最小值,故 x 取 (3/2 + 7/2) / 2 = 5/2
當 x = 5/2 時,f(x) 有最小值
(5/2-3/2)^2 + (5/2-7/2)^2 + 5/2
= 1 + 1 + 5/2
= 9/2
(應該是這樣吧......如果沒有計算錯的話)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 59.112.228.171
推 imeajean:題目有1/2次方耶 08/12 09:07
推 yuchwen:不好意思,我看成1/2 (.....)^1 + 1/2(......)^1 sorry.. 08/12 14:28
> -------------------------------------------------------------------------- <
作者: pear923 (春天來啦~) 看板: teaching
標題: Re: [請益] 請教一題高中數學
時間: Mon Aug 13 11:53:15 2007
※ 引述《LaPo (.....)》之銘言:
: 求一個實數x使f(x)=(2x^2-6x+5)^1/2+(2x^2-14x+29)^1/2的值為最小,並求該最小值。
這個函數就是在x軸上找一點
然後到(3/2,1/2) (7/2,3/2) 這兩點的距離和最小值
此時就用投影點在連線求交點=> 得到(2,0) 即x=2
最小值 f(2) = 1+3 = 4
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 59.104.190.86
推 imlkw:推... 08/13 15:04
推 pollow:推 08/13 18:01
推 GITTA:請問怎麼導出這兩點的? 08/24 15:24
> -------------------------------------------------------------------------- <
作者: tigerbojo (奇珍異果) 看板: teaching
標題: Re: [請益] 請教一題高中數學
時間: Mon Aug 13 16:17:33 2007
※ 引述《LaPo (.....)》之銘言:
: 求一個實數x使f(x)=(2x^2-6x+5)^1/2+(2x^2-14x+29)^1/2的值為最小,並求該最小值。
以很直覺的反應來看這個題目.....
既然這是兩個子函數合併的合成函數.....而且都是取平方根值
那.....(2x^2-6x+5)^1/2 的最小值應該是0不是嗎?
(2x^2-14x+29)^1/2 也是不是嗎?
題目真的沒錯嗎?還是小弟觀念錯誤~~~交流一下!!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 59.114.216.55
> -------------------------------------------------------------------------- <
作者: pollow (Bad Day) 看板: teaching
標題: Re: [請益] 請教一題高中數學
時間: Mon Aug 13 17:58:41 2007
※ 引述《tigerbojo (奇珍異果)》之銘言:
: ※ 引述《LaPo (.....)》之銘言:
: : 求一個實數x使f(x)=(2x^2-6x+5)^1/2+(2x^2-14x+29)^1/2的值為最小,並求該最小值。
: 以很直覺的反應來看這個題目.....
: 既然這是兩個子函數合併的合成函數.....而且都是取平方根值
: 那.....(2x^2-6x+5)^1/2 的最小值應該是0不是嗎?
: (2x^2-14x+29)^1/2 也是不是嗎?
: 題目真的沒錯嗎?還是小弟觀念錯誤~~~交流一下!!
2x^2-6x+5 = 2(x-3/2)^2 + 1/2 , 當 x = 3/2 時才有最小值 1/2
2x^2-14x+29 = 2(x-7/2)^2 + 9/2 , 當 x = 7/2 時才有最小值 9/2
所以不是 0 喔 ^^
再者 .. 因為x是同一個變數 , 所以不能同時使2x^2-6x+5與2x^2-14x+29有最小值
--
you offended the abbot and still wanna go away!?
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 122.124.5.125
> -------------------------------------------------------------------------- <
作者: GITTA (Flame) 看板: teaching
標題: Re: [請益] 請教一題高中數學
時間: Fri Aug 24 15:31:33 2007
※ 引述《pollow (Bad Day)》之銘言:
: ※ 引述《tigerbojo (奇珍異果)》之銘言:
: : 以很直覺的反應來看這個題目.....
: : 既然這是兩個子函數合併的合成函數.....而且都是取平方根值
: : 那.....(2x^2-6x+5)^1/2 的最小值應該是0不是嗎?
: : (2x^2-14x+29)^1/2 也是不是嗎?
: : 題目真的沒錯嗎?還是小弟觀念錯誤~~~交流一下!!
: 2x^2-6x+5 = 2(x-3/2)^2 + 1/2 , 當 x = 3/2 時才有最小值 1/2
: 2x^2-14x+29 = 2(x-7/2)^2 + 9/2 , 當 x = 7/2 時才有最小值 9/2
: 所以不是 0 喔 ^^
: 再者 .. 因為x是同一個變數 , 所以不能同時使2x^2-6x+5與2x^2-14x+29有最小值
但是,前面有人回文是用距離的算法,但是根號內並沒有距離公式啊?
至少兩個根號都要先提出2^1/2吧!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.129.165.31
> -------------------------------------------------------------------------- <
作者: yhliu (老怪物) 看板: teaching
標題: Re: [請益] 請教一題高中數學
時間: Fri Aug 24 18:30:26 2007
※ 引述《pear923 (春天來啦~)》之銘言:
: ※ 引述《LaPo (.....)》之銘言:
: : 求一個實數x使f(x)=(2x^2-6x+5)^1/2+(2x^2-14x+29)^1/2的值為最小,並求該最小值。
: 這個函數就是在x軸上找一點
: 然後到(3/2,1/2) (7/2,3/2) 這兩點的距離和最小值
: 此時就用投影點在連線求交點=> 得到(2,0) 即x=2
: 最小值 f(2) = 1+3 = 4
在下孤陋寡聞,不懂上述解法中 "用投影點在連線求交點"
之意.
印象中, 這有點像光線反射問題. 而由反射定律, 反射角
等於入射角. 因此, 解如下:
f(x) = √2{√[(x-3/2)^2+(1/2)^2] + √[(x-7/2)^2+(3/2)^2]}
令 A=(3/2,1/2), B=(7/2,3/2).
又令 C=(3/2,0), D=(7/2,0).
再設 x 軸上反射點為 P.
則 ΔACP~ΔBDP.
故 CP:DP = AC:BD, 即
x-3/2 : 7/2:x = 1/2 : 3/2 = 1:3
解得 x=2.
--
嗨! 你好! 祝事事如意, 天天 happy! 統計專業版, 需要你的支持! :)
批踢踢實業站 telnet://ptt.cc Statistics (統計學及統計軟體版)
盈月與繁星 telnet://ms.twbbs.org Statistics (統計:讓數字說話)
成大計中站 telnet://bbs.ncku.edu.tw Statistics (統計方法及學理討論區)
交大資訊次世代 telnet://bs2.twbbs.org Statistics (統計與機率)
無名小站 telnet://wretch.twbbs.org Statistics (統計方法討論區)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 163.15.188.87