精華區beta trans_math 關於我們 聯絡資訊
※ [本文轉錄自 NTU-Exam 看板] 作者: diep (隱藏人物) 看板: NTU-Exam 標題: [試題] 94上 張秀瑜 微積分乙 期中 時間: Sun Nov 13 16:11:17 2005 課程名稱︰微積分乙上 課程性質︰共同必修 課程教師︰張秀瑜 開課系所︰管院、地理、經濟 考試時間︰94/11/10 試題 : 1. ___ (a) Find lim√x+1 -2/(x-3). x→3 (b) Prove that lim x^2cos(1/x^2) = 0. x→0 (c) Find all values of a such that f is continuous on R, where { x^2, if x > a; f(x) = { { x+1, if x≦ a. (d) Give a short explanation of why the following approximation is valid. ____ √4.02 ≒ 2 + 1/4(0.02) 2.Show that the function g(x)= x∣x∣has an inflection point at (0,0), but g"(0) does not exist. dy 3 _ 3.Find —. (a) y = 2csc (√x) (b) tan(x/y) = x+y dx 4.If y = f(u) and u = g(x), where f and g are third differentiable function, d^2y d^2y (du)2 dy d^2u d^3y — = — (-) + — — . Find a formula for — similar to dx^2 du^2 (dx) du dx^2 dx^3 the one given above. 5.Prove that if a > 0 and n is any positive integer, then the polynomial function 2n+1 p(x) = x + ax + b cannot have two real roots. 6.Find an equation of the line through the point (3,5) that cuts the least area from the first quadrant. 7.Sketch the graph of y = x^3 -1/x^3 + 1 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 219.86.33.91 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.229.247.245