精華區beta trans_math 關於我們 聯絡資訊
※ [本文轉錄自 NTU-Exam 看板] 作者: Nzing (黑色神話) 看板: NTU-Exam 標題: [試題] 周青松 微積分甲上(2005秋 期末考) 時間: Mon Jan 9 16:05:06 2006 課程名稱︰微積分甲 課程性質︰共同必修 課程教師︰周青松 開課系所︰數學系 考試時間︰2005.01.09 13:20~15:00 試題 : Ⅰ.A) Find f from th information given: f''(x) = sin x, f'(0) = -2, f(0) = 1 B) Calculate the derivative: d 2x ─ (∫ t√(1+t^2) dt) dx tanx Ⅱ.A) The base of a solid is the region between the parabolas x = y^2 and x = 3 - 2 y^2 Find the volume of the solid given that the caves section perpendicular to the x-axis are squares. B) Find the volume of the solid generated by revoluting the region between y = x^2 and y = 2x about the y-axis. Ⅲ.A) a. Find the derivative: d cos x ─ [(sin x) ] dx b. Evaluate the integral: 1 1+x^2 ∫ x 10 dx 0 kx B) Let f'(x) = kf(x) for all x in some interval. Prove that f(x) = Ce , where C is an arbitrary constant. Ⅳ.A) Show that for a>0 dx -1 x+b ∫────────── = sin (──) + C √[a^2 - (x+b)^2] a B) Determine A, B and c so that y = A cosh cx + B sinh cx satisfies the conditions y''- 9y = 0, y(0) = 2, y'(0) = 1. Take c>0 Ⅴ.A) Show that d -1 1 ─ (cosh x) = ────── , x>1 dx √(x^2 - 1) B) Prove that 1 -1 x ∫ ─────── dx = cosh (──) + C , a>0 √(x^2 - a^2) a (每大題均20分) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.240.198 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.229.247.245