精華區beta trans_math 關於我們 聯絡資訊
※ [本文轉錄自 NTU-Exam 看板] 作者: diep (隱藏人物) 看板: NTU-Exam 標題: [試題] 94上 張秀瑜 微積分乙上 期末 時間: Mon Jan 16 11:00:05 2006 課程名稱︰微積分乙上 課程性質︰共同必修 課程教師︰張秀瑜 開課系所︰管院、地理、經濟 考試時間︰94/1/10 試題 : 1. A honeybee population starts with 100 bees and increases at a rate of 15 n'(t) bees per week. What does 100 + ∫ n'(t)dt represent? 7% 0 2. If a and b are positive numbers, show that 1 a b 1 b a ∫ x (1-x) dx = ∫ x (1-x) dx. 10% 0 0 1 3 3. Evaluate the interal ∫ ∣x - x∣dx and interpret it as the area of -1 a region. Sketch the region. 10% 4. Find the volume of the solid obtained by rotating the region bounded 2 2 by y = 4x-x and y = 8x-2x about the line x = -2. 15% -1 2 xsin x cosx 3 ___ 5. Find y': (a) y = e , (b) y = ∫ √1-t^3 dt, 1 2 2 (c) y = ln(x + y ). 15% x 6. Evaluate the limit: (a) lim x ,(b) lim [ln(2+x)-ln(1+x)]. + x→∞ x→0 10% 7. Evaluate the integral. x ___ (a)∫e √2+e^x dx, (b)∫lnx dx 6 π/2 5 (c)∫ dx/xlnx, (d)∫ cos xdx. e 0 20% 8. State the Fundamental Theorem of Calculus Part 1, and find an 2 2 antiderivative F of f(x) = x sinx such tha F(1) = 0. 13% -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 219.81.183.84 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.229.247.245