精華區beta trans_math 關於我們 聯絡資訊
3 2 3 If f(t)=t -3t +2, then the local minimum of g(x)=-2f((x+1) +1) happens at x = _________? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.46.138.89
Eliphalet:不就是 chain rule 而已... 03/04 08:42
yhliu:要看 g(x) 的 局部極小, 就看 f(t) 的局部極大. 很容易得 03/06 17:16
yhliu:t = 0 時 f(t) 有局部極大. 而 (x+1)^3+1 = 0 唯一解是 x=-2 03/06 17:17
> -------------------------------------------------------------------------- < 作者: LuisSantos (但願真的能夠實現願望) 看板: trans_math 標題: Re: [微分] 100 逢甲(春) 填充第2題 時間: Tue Mar 4 17:48:52 2014 ※ 引述《EggAche (蛋疼)》之銘言: : 3 2 3 : If f(t)=t -3t +2, then the local minimum of g(x)=-2f((x+1) +1) happens : at x = _________? f(x) = x^3 - (3)(x^2) + 2 f((x+1)^3 + 1) = ((x+1)^3 + 1)^3 - (3)(((x+1)^3 + 1)^2) + 2 = (x+1)^9 + (3)((x+1)^6) + (3)((x+1)^3) + 1 - (3)((x+1)^6 + (2)((x+1)^3) + 1) + 2 = (x+1)^9 - (3)((x+1)^3) g(x) = (-2)((f((x+1)^3 +1)) = (-2)((x+1)^9) + (6)((x+1)^3) g'(x) = (-18)((x+1)^8) + (18)((x+1)^2) g"(x) = (-144)((x+1)^7) + (36)(x+1) 令 g'(x) = 0 則 (x+1)^8 - (x+1)^2 = 0 => ((x+1)^2)((x+1)^6 - 1) = 0 => ((x+1)^2)((x+1)^2 - 1)((x+1)^4 + (x+1)^2 + 1) = 0 ∵ (x+1)^4 + (x+1)^2 + 1 > 0 , 對所有實數 x ∴ ((x+1)^2)((x+1)^2 - 1) = 0 => ((x+1)^2)[(x+1) + 1][(x+1) - 1] = 0 => ((x+1)^2)(x+2)(x) = 0 => x = -2 , -1 , 0 g"(-2) = (-144)(-1) + (36)(-1) = 108 > 0 g"(1) = 0 g"(0) = -144 + 36 = -108 < 0 ∴ 當 x = -2 時 , g(x) 有最小值 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.167.112.68