精華區beta tutor 關於我們 聯絡資訊
p , q 為二正整數, p/q = 1/(1‧2)+1/(3‧4)+1/(5‧6)+…+1/(99‧100) 試證 (A) p 為 151 的倍數 (B) 0 < ln2-p/q < 0.01 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 210.70.119.54 > -------------------------------------------------------------------------- < 作者: Dirichlet (微風輕吹) 看板: tutor 標題: Re: [解題]倍數相關的証明題 時間: Thu Apr 13 10:07:55 2006 ※ 引述《superpigpig (豬豬)》之銘言: : p , q 為二正整數, p/q = 1/(1‧2)+1/(3‧4)+1/(5‧6)+…+1/(99‧100) : 試證 (A) p 為 151 的倍數 : (B) 0 < ln2-p/q < 0.01 1/(1‧2) + 1/(3‧4) + 1/(5‧6) + … + 1/(99‧100) = 1 - 1/2 + 1/3 - 1/4 + ... + 1/99 - 1/100 = (1 + 1/3 + ... + 1/99) - (1/2)(1 + 1/2 + ... + 1/50) = (1 + 1/2 + ... + 1/100) - (1 + 1/2 + ... + 1/50) = 1/51 + 1/52 + ... + 1/100 = 151‧[1/(100‧51) + 1/(99‧52) + ... + 1/(76‧75)] Hence p = 151‧[qM/(51‧...‧100)] for some integer M>0, note that (151 , 51‧...‧100) = 1 and qM/(51‧...‧100) is a integer, so 151 | p oo 1 ln2 - p/q = Σ -------------- > 0 n=50 (2n+1)(2n+2) oo 1 ln2 - p/q = 1/101 - Σ -------------- < 1/101 < 1/100 = 0.01 n=50 (2n+2)(2n+3) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.217.78 ※ 編輯: Dirichlet 來自: 140.112.217.78 (04/13 10:09)
superpigpig:謝謝,我看懂了,只是第一小題中間好像有幾行怪怪的? 04/13 10:21