※ 引述《guugo (MH)》之銘言:
: 設a b c互異,
: 且f(x)=[(x+a)^2/(a-b)(a-c)]+[(x+b)^2/(b-c)(b-a)]+[(x+c)^2/(c-a)(c-b)],
: 則f(2010)+f(365)=??
: 想法:用通分算不出來,其實也知道不是靠通分解這題(高一的2-2)
: 謝謝解出
f(-b) = (a - b)/(a - c) + (c - b)/(c - a) = (a - c)/(a - c) = 1
f(-a) = (b - a)/(b - c) + (c - a)/(c - b) = (b - c)/(b - c) = 1
f(-c) = (a - c)/(a - b) + (b - c)/(b - a) = (a - b)/(a - b) = 1
f(x)是階數 <= 2 的多項式
顯然f(x)不為一次 二次 多項式
=> f(x)為常數多項式
=> f(x) = 1
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 220.136.220.231
※ 文章網址: http://www.ptt.cc/bbs/Math/M.1414607464.A.094.html