看板 NTU-Exam 關於我們 聯絡資訊
課程名稱︰偏微分方程式一 課程性質︰研究所基礎課 課程教師︰林太家 開課學院:理學院 開課系所︰數學系、數學研究所、應用數學科學研究所 考試日期︰2014年11月11日(二),10:20-12:10 考試時限:110分鐘 試題 :                  Test 2              11/11/2014 1.  (20 pts) Write down an explict formula for a solution of            u_t - Δu + cu = f in R^n ×(0,∞),                  u = g on R^n ×{t = 0},  where c in R is a constant. 2. (20 pts)   We say v in C^2_1(U_T) is a subsolution of the heat equation if             u_t - Δu ≦ 0 in U_T.   (a) Prove for a subsolution v that                1          |x-y|^2         v(x,t) ≦ -------- ∫∫ v(y,s) ---------dyds               4r^n E(x;t,r)    (t-s)^2     for all E(x;t,r) contained U_T.   (b) Prove that therefore max v = max v                U_T  Γ_T   (c) Let ψ: R → R be smooth and convex. Assume u solves the heat equation     and v := ψ(u). Prove v is a subsolution.   (d) Prove v := |Du|^2 + (u_t)^2 is a subsolution, whenever u solves the     heat equation. 3. (20 pts)   Let f(x) be bounded and continuous for x in R^n and satisfy               ∫|f(y)|dy < ∞.   Show that there exists a solution u(x,t) of (1.8a,b) for which              lim u(x,t) = 0.              t→∞   u_t - Δu = 0   for x in R^n, t>0         (1.8a)       u = f(x) for x in R^n, t=0.         (1.8b) 4. (20 pts)   Let             1/(4πt)^(n/2) ×exp(-|z|^2 / 4t) (x in R^n, t > 0)       Φ(x,t) :=             0                 (x in R^n, t < 0)   Prove that              lim ∫ Φ(x,t)p(x) = p(0)              t→0+ R^n        ∞   for p in C (R^n).        0 5. (20 pts)              2   Find a function f in C (R^2) such that ∫ f(y) log|x-y|dy is unbounded as              0        R^2   |x| → ∞. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 115.43.183.100 ※ 文章網址: http://www.ptt.cc/bbs/NTU-Exam/M.1416931725.A.B23.html
t0444564 : 已收錄 11/26 00:11