看板 trans_math 關於我們 聯絡資訊
※ 引述《anger50322 (江)》之銘言: : (1/1‧2‧3)+(2/2‧3‧4)+(3/3‧4‧5)+......+[1/n(n+1)(n+2)]=n(n+3)/4(n+1)(n+2) ^^ ^^ 1 1 1 左式 = Σ ----------- k(k+1)(k+2) n 1 2 1 = (1/2)Σ [--- - ---- + ----] k=1 k k+1 k+2 = (1/2)[ 1/1 - 1/2 - 1/(n+1) + 1/(n+2)] n(n+3) = -------- 4(n+1)(n+2) -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.44.195.212 ※ 文章網址: http://www.ptt.cc/bbs/trans_math/M.1395790623.A.30B.html
anger50322:非常感謝!!!! 03/26 11:07
yhliu :1/[k(k+1)(k+2)]=(1/2){1/[k(k+1)]-1/[(k+1)(k+2)]} 04/01 20:18
yhliu :加總式相消結果=(1/2){1/(1.2)-1/[(n+1)(n+2)]} 04/01 20:19