看板 trans_math 關於我們 聯絡資訊
※ 引述《sx4152 (呵呵)》之銘言: : 題目: : -> ^ ^ ^ : (a) show that vector F = (y^2 cosx +z^3)i +(2ysinx-4)j+(3xz^2 +2)k is a : conservative field : -> : (b) find the scalar potential function for F : 第一小題只要看F的旋度是否是零就可以證了 : 第二小題要怎麼算呢? → (b) 令 ▽G = F δG 則 ----- = (y^2)(cosx) + z^3 ------(1) δx δG ----- = (2y)(sinx) - 4 ------(2) δy δG ----- = (3)(x)(z^2) + 2 ------(3) δz 由(1) G(x,y,z) = (y^2)(sinx) + (x)(z^3) + f(y,z) δG δf ----- = (2y)(sinx) + ----- 對照(2) δy δy δf ----- = -4 => f(y,z) = -4y + h(z) δy ∴ G(x,y,z) = (y^2)(sinx) + (x)(z^3) - 4y + h(z) δG => ----- = (3)(x)(z^2) + h'(z) 對照(3) δz (3)(x)(z^2) + h'(z) = (3)(x)(z^2) + 2 => h'(z) = 2 => h(z) = 2z + c ∴ G(x,y,z) = (y^2)(sinx) + (x)(z^3) - 4y + 2z + c -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.24.193.165 ※ 文章網址: http://www.ptt.cc/bbs/trans_math/M.1403257711.A.C4C.html
sx4152 :謝謝 很清楚明瞭! 06/20 19:26