看板 C_ChatBM 關於我們 聯絡資訊
一、申請項目分類 其他 申請個人勢Vtuber出道宣傳 二、申請人ID dodomilk 三、是否為系列活動 四、活動企畫內容 個人勢Vtuber出道宣傳 五、活動宣傳文內容 標題:[Vtub] 我自己出道!【譯人豆奶】影片勢V 內文: 大家好,我是時常在西洽潛水的dodomilk。 日前終於下定決心要在Vtuber還沒退流行之前,自己弄個V來玩玩了! 先說,我是男的,角色也男的,不會有巴美肉,還請見諒。 總之先附上YouTube連結 https://www.youtube.com/channel/UC8vmL3k7SMDtSrd8UqW0pBw (還請版友們多加訂閱,才能縮成比較短的連結) 頻道名稱是譯人豆奶, 我是個日文翻中文的譯者,目前已出版數十本譯作,今年內破百本應該是沒有問題。 譯作以科普(數學、物理、化學、生物、地科、資工)領域為主, 另外有幾本商管方面的書,還有一些比較難歸類在哪個領域的書。 我會在這個頻道介紹我翻譯過的書。 目前先上傳了五個影片,每個影片介紹一本書。 1.【譯人說書】#1 「半徑是虛數」的圓長什麼樣子?千萬別和數學老師提起! 《數學女孩 龐加萊猜想》世茂出版   https://youtu.be/3o8dp6s4Lxo
其實這本書就是我想開說書頻道的根本原因。 不知道有沒有人記得,差不多3年前,西洽版上有一篇 [閒聊] 虛數之海是啥?? 的文章。 然後,我的回文被板友推爆,這給我很大的鼓勵。 該回文在ptt主機已經被洗掉,以下是我在網路上找到的殘骸。 https://www.pttweb.cc/bbs/C_Chat/M.1545260950.A.924 總之,拜各位板友之賜,讓我覺得說不定可以開個頻道來說說自己翻譯的書。 影片內容就和標題一樣,在回答「半徑是虛數」的圓長什麼樣子。 當然,這在數學上是有些牽強附會的說法,但當作一則趣聞來聽聽也不錯。 如果你有朋友剛好對數學有興趣,或許可以給他看看。 2. 【譯人說書】#2 為什麼賭博難以戒除?憂鬱症藥物如何作用? 《圖解腦科學》人人出版 https://youtu.be/LnNGygzKvU8
這是人人出版的《人人伽利略》系列中的一本,《圖解腦科學》。 人人伽利略系列其實就是以前的日本牛頓雜誌系列, 只是換了家代理商,所以中文譯名也跟著從牛頓改成了伽利略。 書中會提到各種與腦、神經有關的研究。 像是成癮症、憂鬱症、阿茲海默症等疾病的診斷與治療。 另外還有提到天才的大腦和一般人差在哪裡、 人腦的不理性所衍生的行為經濟學等等,可以說是內容十分豐富的書。 3. 【譯人說書】#3 用粒子加速器揪出咖哩無差別殺人事件的犯人! 《基本粒子物理學》東販出版 https://youtu.be/l5yxMukzPxM
和歌山曾發生過一起毒咖哩無差別殺人事件。 犯人在祭典的咖哩中加入砒霜,讓許多中毒、四人死亡。 在警方苦無證據為嫌犯定罪時,粒子加速器幫了個大忙。 除此之外,本書會用很大的篇幅說明作者的工作: 從茨城縣發射微中子束,穿過地底來到岐阜縣的超級神岡探測器。 此時會生成速度比光速快的電子,讓研究人員能研究微中子的性質。 至於,為什麼電子速度可以超過光速?微中子又有什麼好研究的? 就請各位親自確認影片和書本了。 4. 【譯人說書】#4 二戰神秘武器「蒟蒻」 × 豢養火山的男人! 《有趣到睡不著的地球科學》快樂文化出版 https://youtu.be/4LZAGnj4tUQ
「蒟蒻」確實曾是日本在二戰時的武器。 這裡我就直接破梗了,日軍在二戰末期製造了大量無人的「氣球炸彈」, 藉偏西風從日本飛到美國,再拋下炸彈。 當時確實有美國人因此而死亡。 是二戰中,極少數美國本土人民因戰爭而死亡的例子。 而蒟蒻,就是黏貼氣球時使用的漿糊。 另一方面,二戰末期,北海道洞爺湖湖畔, 突然有一座火山誕生,名為昭和新山。 時值戰爭,日本也敗象已露,政府根本不敢公布火山爆發的消息。 不過,有一名熱愛火山的郵差,用自己的業餘所學,詳細記錄了火山的誕生過程。 後來還買下了這個火山周圍的地,成為世界上第一個活火山擁有者。 他的研究在戰後獲得了世界各地的地球科學學者的讚賞。 如果未來你有機會到洞爺湖畔,不妨繞個路到昭和新山看看。 《有趣到睡不著的地球科學》收錄了許多與地球科學有關的趣事。 以上只是其中兩個故事,如果你對其他故事有興趣的話,不妨買這本書來看看。 5. 【譯人說書】#5 如果絕大多數人都認為你的創業構想很棒,千萬別去創業! 《創業實戰全書》商周出版 https://youtu.be/_B6gYu-KQ2g
我猜,板友應該有不少人曾有過想要創業的念頭吧。 當你把創業的構想跟別人說時,別人會贊同或反對呢? 《創業實戰全書》的作者,曾在矽谷參與過許多創投案的田所雅之在書中提到, 如果很多人都認為你會創業成功,那這個創業就很有可能會失敗。 道理很簡單,既然很多人都覺得會成功,就表示大企業也覺得會成功。 大企業都希望能規避風險,所以會選擇成功率高的事業進一步發展。 你想得到的構想,大企業自然也想得到。 但大企業擁有你沒有的資源,所以在創業上你不可能比得過大企業。 簡單來說,要創業的話,就要選擇 看起來很有可能會失敗,但因為你知道多數人不知道的秘密,所以你能讓它成功 的構想。 除了創業構想之外,這本書還有提到如何提出問題、如何驗證、 如何製作出顧客想要的產品、如何規模化等,創業者必須瞭解的問題。 如果你對創業有興趣的話,務必要買來一讀。 6. 【說話不算數】#1 為什麼樣本標準差要除以n-1?因為分子太小! https://youtu.be/k3CReHMQhMg
各位在高中的統計學中應該都有學過, 計算母體標準差時,要除以N;計算樣本標準差時,要除以n-1。 老師通常會說「因為要進行自由度修正」, 但是這樣的說明,通常只會讓人覺得更聽不懂。 這裡我想要用另一種方式來說明,為什麼樣本標準差要除以n-1。 後面會附一個Excel的小實驗,證明除以n-1得到的標準差比較準7. 【說話不算數】#2 為什麼95%信賴區間不是機率?因為神不是貓! https://youtu.be/c5pssZ6Au0c
每到選舉,就會看到各種民調,譬如川川當選總統的機率是45%。 民調中還會提到,在95%信心水準下,誤差為正負3%。 可能很多人會以為,這代表川川真正的支持度,在42%~48%內的機率是95%。 然而這個想法是錯的。 那麼,信心水準、信賴區間究竟是什麼意思呢?這支影片會告訴你答案。 另外,影片後面還會一個用Excel的小實驗,說明什麼是信賴區間。 ------------------------- 目前大概就是這七個影片,未來可能每1~2周才會上一片。 畢竟手上還有不少工作,不管是當V還是製作影片都是初學,更新無法那麼有效率。 V的人物是我借用了Live2D的Haruto這個人物(可商用), 改掉髮型和眼睛,然後自己畫衣服後完成。 畢竟我也沒畫過畫,傷眼的話還請包涵QQ。 目前用羅技的攝影機捕捉,延遲相當嚴重,還在想要怎麼解決。 不知道改用iPhone的話會不會好一點。 背景、BGM沒有變化這點也請多包涵啦,擠不出那麼多時間來處理這些。 目前看起來,有沒有那個V好像不會差很多XD 希望可以盡快讓人物的同步能順暢一點,看起來也比較有感覺。 因為我聊天能力實在低落,所以應該不大可能開直播。 如果各位知道如何增進直播聊天能力的話,歡迎告訴我,讓我也能開雜談來聊天。 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 1.161.121.57 (臺灣) ※ 文章網址: https://www.ptt.cc/bbs/C_ChatBM/M.1641639717.A.D8C.html
laptic: OK,再等一位 60.48.176.40 01/08 19:03
nh507121: ok 219.91.102.153 01/08 19:17
dodomilk: 感謝 1.161.121.57 01/08 19:18